
Università di Bologna - Insegnamento di Circuiti elettronici analogici L-A Prova scritta 070417.

La durata della prova è di **2 ore e mezza**. Si consegna soltanto l'apposito FOGLIO RISPOSTE nel quale i risultati numerici devono essere arrotondati a 3 cifre significative (per es. $0.0012345 \rightarrow 1.24 \cdot 10^{-3}$; $0.0012344 \rightarrow 1.23 \cdot 10^{-3}$).

APPORRE SUBITO COGNOME, NOME e MATRICOLA SUL FOGLIO RISPOSTE

Con riferimento al circuito 070417a e usando per l'operazionale il modello ideale, rispondere alle seguenti domande.

- 1. Ricavare l'espressione simbolica del guadagno $A_v(s) = V_{out}(s)/V_{in}(s)$.
- 2. Con i valori numerici $R_a=10k\Omega, R_b=50k\Omega, C_b=15pF$ calcolare l'intervallo di valori di C_a per i quali la curva di risposta è di tipo passa-basso.

Con riferimento al circuito 070417b, rispondere alle seguenti domande usando per i transistori il modello $I_c=I_e=I_s e^{V_{be}/VT}$ con $I_s=0.1fA$, VT=26mV, $V_{cc}=5V$, $R_1=350k\Omega$, $R_4=6k\Omega$, $R_g=5k\Omega$.

- 3. Calcolare R_3 e $V_{g,OP}$ in modo che le correnti di Q_1 e Q_2 siano rispettivamente $I_{c1,OP}=50\mu A$ e $I_{c2,OP}=2mA$.
- 4. Nelle stesse condizioni del punto 3, calcolare il valore di R_2 in modo che sia $V_{o,OP} = V_{g,OP}$
- 5. Nelle stesse condizioni dei punti precedenti, calcolare il guadagno di tensione $A_v = \frac{v_o}{v_g}$.
- 6. Scrivere la netlist SPICE atta a verificare numericamente il risultato ottenuto al punto 5.