.AC (AC Analysis)

```
Purpose The .AC command calculates the frequency response of a circuit over a range of frequencies.
General Form .AC <sweep type><points value>
    + <start frequency value> <end frequency value>
Examples .AC LIN 101 100Hz 200Hz
.AC OCT 10 1kHz 16kHz
.AC DEC 20 1MEG 100MEG
```


Arguments and Options

```
<sweep type>
Must be LIN, OCT, or DEC, as described below.
```

Parameter	Description	Description
LIN	linear sweep	The frequency is swept linearly from the starting to the ending frequency. The <points value> is the total number of points in the sweep.
OCT	sweep by octaves	The frequency is swept logarithmically by octaves. The <points value> is the number of points per octave.
DEC	sweep by decades	The frequency is swept logarithmically by decades. The <points value> is the number of points per decade.

<points value>
Specifies the number of points in the sweep, using an integer.
<start frequency value> <end frequency value>
The end frequency value must not be less than the start frequency value, and both must be greater than zero. The whole sweep must include at least one point. If a group delay (G
suffix) is specified as an output, the frequency steps must be close enough together that the phase of that output changes smoothly from one frequency to the next. Calculate group delay by subtracting the phases of successive outputs and dividing by the frequency increment.

Comments
 A PRINT (Print), PLOT (Plot), or ,PROBE (Probe) command must be used to get the

 results of the AC sweep analysis.AC analysis is a linear analysis. The simulator calculates the frequency response by linearizing the circuit around the bias point.
All independent voltage and current sources that have AC values are inputs to the circuit. During AC analysis, the only independent sources that have nonzero amplitudes are those using AC specifications. The SIN specification does not count, as it is used only during transient analysis.

To analyze nonlinear functions such as mixers, frequency doublers, and AGC, use .TRAN (Transient Analysis).

.DC (DC Analysis)

Purpose

Sweep Type The sweep can be linear, logarithmic, or a list of values.

Parameter	Description	Meaning
LIN	linear sweep	The sweep variable is swept linearly from the starting to the ending value.
OCT	sweep by octaves	Sweep by octaves. The sweep variable is swept logarithmically by octaves.
DEC	sweep by decades	Sweep by decades. The sweep variable is swept logarithmically by decades.
LIST	list of values	Use a list of values.

Linear Sweep

```
General Form .DC [LIN] <sweep variable name>
    + <start value> <end value> <increment value>
    + [nested sweep specification]
```



```
    .DC VCE OV 10V .5V IB OmA 1mA 50uA
    .DC RES RMOD(R) 0.9 1.1 . 001
```

Arguments and Options
<start value>
Can be greater or less than <end value>: that is, the sweep can go in either direction.

<increment value>

The step size. This value must be greater than zero.
Comments The sweep variable is swept linearly from the starting to the ending value. The keyword LIN is optional.

Logarithmic Sweep

General Form .DC <logarithmic sweep type><sweep variable name> + <start value> <end value> <points value>

+ [nested sweep specification]
Examples .DC DEC NPN QFAST(IS) 1E-18 1E-14 5

Arguments and Options

<logarithmic sweep type>
Must be specified as either DEC (to sweep by decades) or OCT (to sweep by octaves).
<start value>
Must be positive and less than <end value>.
<points value>
The number of steps per octave or per decade in the sweep. This value must be an integer.
Comments Either OCT or DEC must be specified for the <logarithmic sweep type>.

Nested Sweep

```
General Form .DC <sweep variable name> LIST <value>*
    +[nested sweep specification]
Examples .DC TEMP LIST 0 20 27 50 80 100 PARAM Vsupply 7.5 15 .5
Arguments and Options
```

<sweep variable name>
After the DC sweep is finished, the value associated with <sweep variable name> is set back to the value it had before the sweep started. The following items can be used as sweep variables in a DC sweep:

Parameter	Description	Meaning
Source	A name of an independent voltage or current source.	During the sweep, the source's voltage or current is set to the sweep value.
Parameter	A model type and model name followed by a model parameter name in parenthesis.	The parameter in the model is set to the sweep value. The following model parameters cannot be (usefully) swept: L and W for the MOSFET device (use LD and WD as a work around), and any temperature parameters, such as TC1 and TC2 for the resistor.
Temperature	Use the keyword TEMP for <sweep variable name>.	Set the temperature to the sweep value. For each value in the sweep, all the circuit components have their model parameters updated to that temperature.
Global	Use the keyword PARAM, followed by the parameter	During the sweep, the global parameter's value is set to the sweep value and all expressions are reevaluated.
name, for		
<sweep variable name>.		

Comments
For a nested sweep, a second sweep variable, sweep type, start, end, and increment values can be placed after the first sweep. In the nested sweep example, the first sweep is the inner loop: the entire first sweep is performed for each value of the second sweep.

When using a list of values, there are no start and end values. Instead, the numbers that follow the keyword LIST are the values that the sweep variable is set to.

The rules for the values in the second sweep are the same as for the first. The second sweep generates an entire .PRINT (Print) table or PLOT (Plot) plot for each value of the sweep. Probe displays nested sweeps as a family of curves.

.END (End of Circuit)

Purpose

General Form

Examples

Comments

The .END command marks the end of the circuit. All the data and every other command must come before it. When the .END command is reached, PSpice does all the specified analyses on the circuit.
. END

* 1st circuit in file
... circuit definition
. END
* 2nd circuit in file
... circuit definition
. END
There can be more than one circuit in an input file. Each circuit is marked by an .END command. PSpice processes all the analyses for each circuit before going on to the next one.
Everything is reset at the beginning of each circuit. Having several circuits in one file gives the same results as having them in separate files and running each one separately. However, all the simulation results go into one .OUT file and one .DAT file. This is a convenient way to arrange a set of runs for overnight operation.

The last statement in an input file must be an .END command.

．MODEL（Model）

Purpose

General Form

The ．MODEL command defines a set of device parameters which can be referenced by devices in the circuit．

```
.MODEL <model name> [AKO: <reference model name>]
```

+ 〈model type>
+ ([<parameter name〉 = 〈value〉 [tolerance specification]]*
+ [T_MEASURED=<value〉] [[T_ABS=<value>] or
$+\left[T _R E L _G L O B A L=\langle v a l u e\rangle\right]$ or [T_REL_LOCAL=<value〉]])

Examples

```
.MODEL RMAX RES (R=1.5 TC1=.02 TC2=.005)
```

.MODEL DNOM D (IS=1E-9)
.MODEL QDRIV NPN (IS=1E-7 BF=30)
. MODEL MLOAD NMOS (LEVEL=1 VTO=. $7 \mathrm{CJ}=.02 \mathrm{pF})$
.MODEL CMOD CAP ($\mathrm{C}=1$ DEV 5\%)
.MODEL DLOAD D (IS=1E-9 DEV .5\% LOT 10\%)
.MODEL RTRACK RES (R=1 DEV/GAUSS 1\% LOT/UNIFORM 5\%)
.MODEL QDR2 AKO:QDRIV NPN ($B F=50$ IKF=50m)

Arguments and Options

＜model name＞

The model name which is used to reference a particular model．
＜reference model name＞
The model types of the current model and the AKO（A Kind Of）reference model must be the same．The value of each parameter of the referenced model is used unless overridden by the current model，e．g．，for QDR2 in the last example，the value of IS derives from QDRIV，but the values of BF and IKF come from the current definition．Parameter values or formulas are transferred，but not the tolerance specification．The referenced model can be in the main circuit file，accessed through a ．INC command，or it can be in a library file； see ．LIB（Library File）．

＜model type＞

Must be one of the types outlined in the table that follows．
Devices can only reference models of a corresponding type；for example：
－A JFET can reference a model of types NJF or PJF，but not of type NPN．
－There can be more than one model of the same type in a circuit，although they must have different names．

Following the＜model type＞is a list of parameter values enclosed by parentheses．None， any，or all of the parameters can be assigned values．Default values are used for all unassigned parameters．The lists of parameter names，meanings，and default values are found in the individual device descriptions．

.OP (Bias Point)

Purpose

General Form

Examples
Comments

The .OP command causes detailed information about the bias point to be printed.
. OP
. OP
This command does not write output to the Probe data file. The bias point is calculated regardless of whether there is a .OP command. Without the .OP command, the only information about the bias point in the output is a list of the node voltages, voltage source currents, and total power dissipation.
Using a .OP command can cause the small-signal (linearized) parameters of all the nonlinear controlled sources and all the semiconductor devices to be printed in the output file.
The .OP command controls the output for the regular bias point only. The TRAN (Transient Analysis) command controls the output for the transient analysis bias point.

If no other analysis is performed, then no Probe data file is created.

If the different output variables differ considerably in their output ranges, then the plot is given more than one y-axis using ranges corresponding to the different output variables.

The y-axis of frequency response plots (AC) is always logarithmic.
The last example illustrates how to plot the voltage at a node that has a name rather than a number. The first item to plot is a node voltage, the second item is the voltage across a resistor, and the third item is another node voltage, even though the second and third items both begin with the letter R . The square brackets force the interpretation of names to mean node names.

.PRINT (Print)

Purpose

General Form

Examples

The .PRINT command allows results from DC, AC, noise, and transient analyses to be an output in the form of tables, referred to as print tables in the output file.

```
.PRINT[/DGTLCHG] <analysis type> [output variable]*
.PRINT DC V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)
.PRINT AC VM(2) VP(2) VM(3,4) VG(5) VDB(5) IR(6) II(7)
.PRINT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)
.PRINT TRAN V(3) V(2,3) ID(M2) I(VCC)
.PRINT TRAN D(QA) D(QB) V(3) V(2,3)
.PRINT/DGTLCHG TRAN QA QB RESET
.PRINT TRAN V(3) V(R1) V([RESET])
```

The last example illustrates how to print a node that has a name, rather than a number. The first item to print is a node voltage, the second item is the voltage across a resistor, and the third item to print is another node voltage, even though the second and third items both begin with the letter R. The square brackets force the names to be interpreted as node names.

Arguments and Options

[/DGTLCHG]
For digital output variables only. Values are printed for each output variable whenever one of the variables changes.
<analysis type>
Only one analysis type- DC, AC, NOISE, or TRAN—can be specified for each .PRINT command.
<output variable>
Following the analysis type is a list of the output variables. There is no limit to the number of output variables: the printout is split up depending on the width of the data columns (set using NUMDGT option) and the output width (set using WIDTH option). See
.PROBE (Probe) for the syntax of output variables.
The values of the output variables are printed as a table where each column corresponds to one output variable. You can change the number of digits printed for analog values by using the NUMDGT option of the ,OPTIONS (Analysis Options) command.

An analysis can have multiple .PRINT commands.

.PROBE (Probe)

Purpose

General Form

Examples

The .PROBE command writes the results from DC, AC, and transient analyses to a data file used by Probe.
.PROBE[/CSDF][output variable]*
. PROBE
. PROBE V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)
. PROBE/CSDF
. PROBE V(3) V(R1) V([RESET])
.PROBE D(QBAR)
The first example (with no output variables) writes all the node voltages and all the device currents to the data file. The list of device currents written is the same as the device currents allowed as output variables.

The second example writes only those output variables specified to the data file, to restrict the size of the data file.

The third example creates a data file in a text format using the Common Simulation Data File (CSDF) format, not a binary format. This format is used for transfers between different computer families. CSDF files are larger than regular text files.

The fourth example illustrates how to specify a node that has a name rather than a number. The first item to output is a node voltage, the second item is the voltage across a resistor, and the third item to output is another node voltage, even though the second and third items both begin with the letter R . The square brackets force the interpretation of names to mean node names.
The last example writes only the output at digital node QBAR to the data file, to restrict the size of the data file.

Arguments and Options

[output variable]
This section describes the types of output variables allowed in a .PRINT (Print), .PLOT (Plot), and .PROBE command. Each .PRINT or .PLOT can have up to 8 output variables. This format is similar to that used when calling up waveforms while running Probe.

See the tables below for descriptions of the possible output variables. If .PROBE is used without specifying a list of output variables, all of the circuit voltages and currents are stored for post-processing. When an output variable list is included, the data stored is limited to the listed items. This form is intended for users who want to limit the size of the Probe data file.

Comments Refer to your PSpice user's guide for a description of Probe, for information about using the Probe data file, and for more information on the use of text files in Probe. You can also consult Probe Help.

Unlike the .PRINT and .PLOT commands, there are no analysis names before the output variables. Also, the number of output variables is unlimited.

DC Sweep and Transient Analysis Output Variables

For DC sweep and transient analysis, these are the available output variables:

General Form	Meaning of Output Variable
D(<name>)	digital value of <name> (a digital node)*
I(<name>)	current through a two terminal device
Ix(<name>)	current into a terminal of a three or four terminal device (x is one of $\mathrm{B}, \mathrm{D}, \mathrm{G}$, or S)
Iz (<name>)	current into one end of a transmission line (z is either A or B)
V(<node>)	voltage at a node
V (<+ node>, <- node>)	voltage between two nodes
V (<name>)	voltage across a two-terminal device
Vx(<name>)	voltage at a non-grounded terminal of a device (see Ix)
$\mathrm{Vz}($ (name>)	voltage at one end of a transmission line (z is either A or B)
Vxy(<name>)	voltage across two terminals of a three or four terminal device type
*These values are available for transient and DC analysis only. For the .PRINT/DGTLCHG statement, the $D()$ is optional.	
Example	Meaning
D(QA)	the value of digital node QA
I(D5)	current through diode D5
IG(J10)	current into gate of J10
V (3)	voltage between node three and ground
$\mathrm{V}(3,2)$	voltage between nodes three and two
V(R1)	voltage across resistor R1
VA(T2)	voltage at port A of T2
VB(Q3)	voltage between base of transistor Q3 and ground
VGS(M13)	gate-source voltage of M13

Multiple-Terminal Devices

For the V (<name>) and I (<name>) forms, where <name> must be the name of a two-terminal device, the devices are:

Character ID	Two-Terminal Device
C	capacitor
D	diode
E	voltage-controlled voltage source
F	current-controlled current source
G	voltage-controlled current source
H	current-controlled voltage source)
I	independent current source
L	inductor
R	resistor
S	voltage-controlled switch
V	independent voltage source
W	current-controlled switch

For the $\mathrm{Vx}($ (name>), $\mathrm{Vxy}(<$ name>), and $\mathrm{Ix}(<$ name>) forms, where <name> must be the name of a three or four-terminal device and x and y must each be a terminal abbreviation, the devices and the terminals areas follows. For the $\mathrm{Vz}($ <name>) and Iz(<name>) forms, <name> must be the name of a transmission line (T device) and z must be A or B .

Three \& Four-Terminal Device Type	Terminal Abbreviation
B (GaAs MESFET)	D (drain)
	G (gate)
J (Junction FET)	S (source)
	D (drain)
	G (gate)
M (MOSFET)	S (source)
	D (drain)
	G (gate)
	S (source)
Q (Bipolar transistor)	B (bulk, substrate)
	C (collector)
	B (base)
	E (emitter)
	S (substrate)

Three \& Four-Terminal Device Type	Terminal Abbreviation
T (transmission line)	Va (near side voltage)
	Ia (near side current)
	Vb (far side voltage)
Z (IGBT)	Ib (far side current)
	C (collector)
	G (gate)
	E (emitter)

AC Analysis

For AC analysis, the output variables listed in the preceding section are augmented by adding a suffix.

82
For AC analysis, the suffixes are ignored for a .PROBE command, but can be used in a PRINT (Print) command and a PLOT (Plot) command, and when adding a trace in Probe. For example, in a .PROBE command, $\mathrm{VDB}(\mathrm{R} 1)$ is translated to $\mathrm{V}(\mathrm{R} 1)$, which is the raw data.

For these devices, you need to put a zero-valued voltage source in series with the device (or terminal) of interest before you can print or plot the current through this voltage source.

Suffix	Meaning of Output Variables
none	magnitude
DB	magnitude in decibels
G	group delay ($-d$ PHASE/dFREQUENCY)
I	imaginary part
M	magnitude
P	real part in degrees
R	Meaning of Output Variables for AC Analysis
Examples	imaginary part of current through R13
II(R13)	group delay of gate current for M3
IGG(M3)	real part of I through VIN
IR(VIN)	group delay of current at port A of T2
IAG(T2)	magnitude of complex voltage across nodes 2 \& 3
V(2,3)	db magnitude of V across R1
VDB(R1)	phase of base-emitter V at Q3
VBEP(Q3)	magnitude of V at node 2
VM(2)	

Current outputs for the F and G devices are not available for DC and transient analyses.

Noise Analysis

For noise analysis, the output variables are predefined as follows:

Output Variable	Meaning of Output Variables for Noise Analysis
INOISE	Total RMS summed noise at input node
ONOISE	INOISE equivalent at output node
DB(INOISE)	INOISE in decibels
DB(ONOISE)	ONOISE in decibels

.PRINT (Print) and .PLOT (Plot) cannot be used for the noise from any one device. However, the print interval on the NOISE (Noise Analysis) command can be used to output this information.

.TEMP (Temperature)

Purpose The .TEMP command sets the temperature at which all analyses are done.

General Form

Examples
.TEMP <temperature value>*
.TEMP 125
.TEMP 027125
Comments
The temperatures are in degrees Centigrade. If more than one temperature is given, then all analyses are performed for each temperature.
It is assumed that the model parameters were measured or derived at the nominal temperature, TNOM ($27^{\circ} \mathrm{C}$ by default). See the OPTIONS (Analysis Options) command for setting TNOM.
.TEMP behaves similarly to the list variant of the STEP(Parametric Analysis) statement, with the stepped variable being the temperature.

.TF (Transfer)

Purpose The .TF command/statement causes the small-signal DC gain to be calculated by linearizing the circuit around the bias point.

General Form

.TF <output variable> <input source name>

Examples

.TF V(5) Vin
.TF I(VDRIV) ICNTRL

Arguments and Options

<output variable>
This has the same format and meaning as in the PRINT (Print) statement.
Comments The gain from <input source name> to <output variable> and the input and output resistances are evaluated and written to the output file. This output does not require a .PRINT (Print), .PLOT (Plot), or .PROBE (Probe) statement.When <output variable> is a current, it is restricted to be the current through a voltage source.

The results of the .TF command are only available in the output file. They cannot be viewed in Probe.

.TRAN (Transient Analysis)

Purpose The .TRAN command causes a transient analysis to be performed on the circuit and specifies the time period for the analysis.

```
General Form
    .TRAN[/OP] <print step value> <final time value>
    +[no-print value [step ceiling value]][SKIPBP]
Examples .TRAN 1ns 100ns
    .TRAN/OP 1ns 100ns 20ns SKIPBP
    .TRAN 1ns 100ns 0ns .1ns
```


Arguments and Options

[/OP]
Causes the same detailed printing of the bias point that the OP (Bias Point) command does for the regular bias point. Without using this option, only the node voltages are printed for the transient analysis bias point.
<print step value>
Sets the time interval used for printing (.PRINT), plotting (.PLOT), or performing a Fourier integral on (.FOUR) the results of the transient analysis.

Since the results are computed at different times than they are printed, a 2nd-order polynomial interpolation is used to obtain the printed values. This applies only to ,PRINT (Print), ,PLOT (Plot), and ,FOUR (Fourier Analysis) outputs and does not affect Probe.
<final time value>
Sets the end time for the analysis.
[no-print value]
Sets the time interval (from TIME=0) that is not printed, plotted, or given to Probe.
[step ceiling value]
Overrides the default ceiling on the internal time step with a lower value.
[SKIPBP]
Skips calculation of the bias point.
When this option is used, the bias conditions are fully determined by the $\mathrm{IC}=$ specifications for capacitors and inductors.

Comments The transient analysis calculates the circuit's behavior over time, always starting at TIME $=0$ and finishing at <final time value>, but you can suppress the output of a portion of the analysis. Use a ,PRINT (Print), PLOT (Plot), FOUR (Fourier Analysis), or .PROBE (Probe) to get the results of the transient analysis.

Prior to performing the transient analysis, PSpice computes a bias point for the circuit separate from the regular bias point. This is necessary because at the start of a transient analysis, the independent sources can have different values than their DC values.

The internal time step of the transient analysis adjusts as the analysis proceeds: over intervals when there is little activity, the time step is increased, and during busy intervals it is decreased. The default ceiling on the internal time step is <final time value>/50, but when there are no charge storage elements, inductances, or capacitances in the circuit, the ceiling is <print step value>.
The .TRAN command also sets the variables TSTEP and TSTOP, which are used in defaulting some waveform parameters. TSTEP is equal to <print step value> and TSTOP is equal to <final time value>.

Refer to your PSpice user's guide for more information on setting initial conditions.

* (Comment)

Purpose
General Form
Examples
Comments

A statement beginning with an asterisk * is a comment line, which PSpice ignores.

* [any text]
* This is an example of
* a multiple-line comment

Use an asterisk at the beginning of each line you want to be a comment. A single asterisk does not extend to subsequent lines. For example:

* .MODEL ABC NMOS (. . . .
+)
produces an error message, because the second line is not covered by the first asterisk.
The use of comment statements throughout the input is recommended. It is good practice to insert a comment line just before a subcircuit definition to identify the nodes, for example:

$*$		$+I N$	$-I N$	V+	V-	$+0 U T$	-OUT
. SUBCKT	OPAMP	100	101	1	2	200	201

or to identify major blocks of circuitry.

; (In-line Comment)

Purpose
General Form
Examples

Comments

A semicolon ; is treated as the end of a line.

```
circuit file text ;[any text]
```

R13 6810 ; R13 is a
; feedback resistor
C3 150 . 1 U ; decouple supply

The simulator moves on to the next line in the circuit file. The text on the line after the semicolon ; is a comment and has no effect. The use of comments throughout the input is recommended. This type of comment can also replace comment lines, which must start with * in the first column.
Trailing in-line comments that extend to more that one line can use a semicolon to mark the beginning of the subsequent comment lines, as shown in the example.

+ (Line Continuation)

Purpose
General Form
Examples
Comments

A plus sign + is treated as the continuation of the previous line.

```
circuit file text
```

+ more text
.DISTRIBUTION bi_modal (-1,1) (-.5,1) (-.5,0) (.5,0) $+(.5,1)(1,1)$

Because the simulator reads the line preceded by a plus sign as a continuation of the previous line, you can use the plus sign to break up long lines of command text.

Analog Devices

Letter	Device Type	Letter	Device Type
B	GaAsFET	N	Digital Input (N Device)
C	Capacitor	0	Digital Output (O Device)
D	Diode	Q	Bipolar Transistor
E	Voltage-Controlled Voltage Source	R	Resistor
F	Current-Controlled Current Source	S	Voltage-Controlled Switch
G	Voltage-Controlled Current Source	T	Transmission Line
H	Current-Controlled Voltage Source	U	Digital Primitive Summary
I	Independent Current Source \& Stimulus	U STIM	Stimulus Devices
J	Junction FET	V	Independent Voltage Source \& Stimulus
K	Inductor Coupling (and Magnetic Core)	W	Current-Controlled Switch
K	Iransmission Line Coupling	X	Subcircuit Instantiation
L	Inductor	Z	IGBT
M	New! MOSFET		

Digital Devices
Index
Glossary

Capacitor

```
General Form C<name> <(+) node> <(-) node> [model name] <value> [IC=<initial value>]
Examples CLOAD 15 0 20pF
C2 1 2 .2E-12 IC=1.5V
CFDBCK 3 33 CMOD 10pF
Model Form
.MODEL <model name> CAP [model parameters]
```


Arguments and Options

$(+)$ and (-) nodes
Define the polarity when the capacitor has a positive voltage across it. The first node listed (or pin one in Schematics) is defined as positive. The voltage across the component is therefore defined as the first node voltage less the second node voltage.
[model name]
If [model name] is left out, then <value> is the capacitance in farads. If [model name] is specified, then the value is given by the model parameters; see Capacitor Value
Formula.
<initial value>
The initial voltage across the capacitor during the bias point calculation. It can also be specified in a circuit file using a .IC command as follows:
. IC V(+node, -node) 〈initial value〉
Comments
Positive current flows from the (+) node through the capacitor to the (-) node. Current flow from the first node through the component to the second node is considered positive.
For details on using the .IC command in a circuit file, see IC (Initial Bias Point Condition) and refer to your PSpice user's guide for more information.
The initial voltage across the capacitor can also be set in Schematics by using the IC1 symbol if the capacitor is connected to ground or by using the IC2 symbol for setting the initial conditions between two nodes. These symbols can be found in special.sib.

For more information about setting initial conditions, refer to the Schematics User's Guide if you are using Schematics, or refer to your PSpice user's guide if you are using PSpice.

-Chapter

Schematics Symbols

For standard C parts, the effective value of the part is set directly by the VALUE attribute. For the variable capacitor, C_VAR, the effective value is the product of the base value (VALUE) and multiplier (SET).

In general, capacitors should have positive component values (VALUE attribute). In all cases, components must not be given a value of zero.
However, there are cases when negative component values are desired. This occurs most often in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming from the real to the RLC equivalent, it is possible to end up with negative component values.
PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise analyses. A transient analysis may fail for a circuit with negative components. Negative capacitors may create instabilities in time that the analysis cannot handle.

Symbol Name	Model Type	Attribute	Attribute Description
C	capacitor	VALUE	capacitance
		IC	initial voltage across the capacitor during bias point calculation
C_VAR		VALUE	base capacitance multiplier

Breakout Parts

For non-stock passive and semiconductor devices, Schematics provides a set of breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters. Another approach is to use the model editor to derive an instance model and customize this. For example, you could add device and/or lot tolerances to model parameters.
Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix BREAK. By default, the model name is the same as the part name and references the appropriate device model with all parameters set at their default. For instance, the DBREAK part references the DBREAK model which is derived from the intrinsic PSpice A/D D model (.MODEL DBREAK D).

For breakout part CBREAK, the effective value is computed from a formula that is a function of the specified VALUE attribute.

Part Type	Symbol Name	Symbol Library	Attribute	Description
capacitor	CBREAK	breakout.s 1 b	VALUE	capacitance initial voltage across the capacitor during bias point calculation
			IC	CAP model name

Capacitor Model Parameters

Model Parameters ${ }^{*}$	Description	Units	Default
C	capacitance multiplier		1.0
TC1	linear temperature coefficient	${ }^{\circ} \mathrm{C}^{-1}$	0.0
TC2	quadratic temperature coefficient	${ }^{\circ} \mathrm{C}^{-2}$	0.0
T_ABS	absolute temperature	${ }^{\circ} \mathrm{C}$	
T_MEASURED	measured temperature	${ }^{\circ} \mathrm{C}$	
T_REL_GLOBAL	relative to current temperature	${ }^{\circ} \mathrm{C}$	
T_REL_LOCAL	relative to AKO model temperature	${ }^{\circ} \mathrm{C}$	
VC1	linear voltage coefficient	volt ${ }^{-1}$	0.0
VC2	quadratic voltage coefficient	volt-2	0.0

* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (Model).

Capacitor Equations

Capacitor Value Formula

If [model name] is specified, then the value is given by:
〈value〉•C•(1+VC1 \cdot V+VC2 $\left.\cdot V^{2}\right) \cdot\left(1+\mathbf{T C 1} \cdot(T-T n o m)+\right.$ TC2 $\left.\cdot(T-T n o m)^{2}\right)$
where <value> is normally positive (though it can be negative, but not zero). Tnom is the nominal temperature (set using TNOM option).

Capacitor Equation for Noise

The capacitor does not have a noise model.

Section

Diode

General Form
Examples
DCLAMP 14 O DMOD
D13 1517 SWITCH 1.5
Model Form .MODEL 〈mode1 name> D [model parameters]
Description
The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. Positive current is current flowing from the anode through the diode to the cathode.

Arguments and Options

<(+) node>
The anode.
<(-) node>
The cathode.
[area value]
Scales IS, ISR, IKF,RS, CJO, and IBV, and has a default value of 1.
IBV and BV are both specified as positive values.

Schematics Symbols

The following table lists the set of diode breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.

Symbol Name	Model Type	Attribute	Attribute Description
DBREAK	D, X	MODEL	D model name
DBREAK3			
DBREAKCR			
DBREAKVV			
DBREAKZ			

Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL. Additionally, model parameters can be assigned unique measurement temperatures using the T_MEASURED model parameter. For more information, see Special Considerations.

Diode Model Parameters

Model Parameters*	Description	Unit	Default
AF	flicker noise exponent		1.0
BV	reverse breakdown knee voltage	volt	infinite
CJO	zero-bias p-n capacitance	farad	0.0
EG	bandgap voltage (barrier height)	eV	1.11
FC	forward-bias depletion capacitance coefficient		0.5
IBVL	low-level reverse breakdown knee current	amp	0.0
IBV	reverse breakdown knee current	amp	1E-10
IKF	high-injection knee current	amp	infinite
IS	saturation current	amp	1E-14
ISR	recombination current parameter	amp	0.0
KF	flicker noise coefficient		0.0
M	p-n grading coefficient		0.5
N	emission coefficient		1.0
NBV	reverse breakdown ideality factor		1.0
NBVL	low-level reverse breakdown ideality factor		1.0
NR	emission coefficient for isr		2.0
RS	parasitic resistance	ohm	0.0
TBV1	bv temperature coefficient (linear)	${ }^{\circ} \mathrm{C}^{-1}$	0.0
TBV2	bv temperature coefficient (quadratic)	${ }^{\circ} \mathrm{C}-2$	0.0
TIKF	ikf temperature coefficient (linear)	${ }^{\circ} \mathrm{C}^{-1}$	0.0
TRS1	rs temperature coefficient (linear)	${ }^{\circ} \mathrm{C}^{-1}$	0.0
TRS2	rs temperature coefficient (quadratic)	${ }^{\circ} \mathrm{C}^{-2}$	0.0
TT	transit time	sec	0.0
T_ABS	absolute temperature	${ }^{\circ} \mathrm{C}$	
T_MEASURED	measured temperature	${ }^{\circ} \mathrm{C}$	
T_REL_GLOBAL	relative to current temperature	${ }^{\circ} \mathrm{C}$	
T_REL_LOCAL	Relative to AKO model temperature	${ }^{\circ} \mathrm{C}$	
vJ	$p-n$ potential	volt	1.0
XTI	IS temperature exponent		3.0

[^0]
Diode Equations

The equations in this section use the following variables:

Vd	$=$ voltage across the intrinsic diode only
Vt	$=k \cdot \mathrm{~T} / q$ (thermal voltage)
k	$=$ Boltzmann's constant
q	$=$ electron charge
T	$=$ analysis temperature $\left({ }^{\circ} \mathrm{K}\right)$
Tnom	$=$ nominal temperature (set using TNOM option)

Other variables are listed in Diode Model Parameters.

Diode Equations for DC Current

```
\(\mathrm{Id}=\operatorname{area} \cdot(\mathrm{Ifwd}-\mathrm{Irev})\)
    Ifwd \(=\) forward current \(=\) Inrm \(\cdot\) Kinj + Irec \(\cdot\) Kgen
    Inrm \(=\) normal current \(=\mathrm{IS} \cdot\left(e^{\mathrm{Vd}\left(\mathrm{N} \cdot \mathrm{VV}_{\mathrm{V}}\right)}-1\right)\)
    if: IKF > 0
    then: Kinj \(=\) high-injection factor \(=(\mathbf{I K F} /(\mathbf{I K F}+\text { Inrm }))^{1 / 2}\)
    else: \(\quad\) Kinj \(=1\)
    Irec \(=\) recombination current \(=\operatorname{ISR} \cdot\left(e^{\mathrm{Vd}\left(\mathbb{N R} \cdot \mathrm{VI}_{\mathrm{I}}\right)}-1\right)\)
    Kgen \(=\) generation factor \(=\left((1-\mathrm{Vd} / \mathrm{VJ})^{2}+0.005\right)^{\mathrm{M} / 2}\)
Irev \(=\) reverse current \(=\operatorname{Irev}_{\text {high }}+\operatorname{Irev}_{\text {low }}\)
    \(\operatorname{Irev}_{\text {high }}=\mathrm{IBV} \cdot e^{-(\mathrm{Vd}+\mathrm{BV}) /\left(\mathrm{NBV}^{2} \cdot \mathrm{~V}_{\mathrm{t}}\right)}\)
    Irev \(_{\text {low }}=\) IBVL \(\cdot e^{-\left(\mathrm{V}_{\mathrm{d}}+\mathrm{BV}\right) /\left(\mathrm{NBVL} \cdot \mathrm{V}_{\mathrm{V}}\right)}\)
```


Diode Equations for Capacitance

$$
\begin{array}{ll}
\mathrm{Cd}=\mathrm{Ct}+\text { area } \cdot \mathrm{Cj} \\
\mathrm{Ct}= & \text { transit time capacitance }=\mathrm{TT} \cdot \mathrm{Gd} \\
& \mathrm{Gd}=\mathrm{DC} \text { conductance }=\text { area } \cdot \frac{\mathrm{d}(\text { Inrm } \cdot \text { Kinj }+ \text { Irec } \cdot \text { Kgen })}{\mathrm{dVd}} \\
& \mathrm{Kinj}=\text { high-injection factor } \\
\mathrm{Cj}= & \mathrm{CJO} \cdot(1-\mathrm{Vd} / \mathrm{VJ})^{-\mathrm{M}} \\
\mathrm{Cj}= & \text { CJO } \cdot(1-\mathrm{FC})^{-(1+\mathrm{m})} \cdot(1-\mathrm{FC} \cdot(1+\mathbf{M})+\mathbf{M} \cdot \mathrm{Vd} / \mathbf{V J}) \mathrm{IF}: \mathrm{Vd}>\mathrm{FC} \cdot \mathrm{VJ}
\end{array}
$$

$\mathrm{Cj}=$ junction capacitance

Diode Equations for Temperature Effects

$\mathbf{I S}(\mathrm{T})=\mathbf{I S} \cdot \boldsymbol{e}^{(\mathrm{T} / \mathrm{Tnom}-1) \cdot E G(\mathbb{N} \cdot V I)} .(\mathrm{T} / \text { Tnom })^{\text {xTIN }}$

$\mathbf{I K F}(\mathrm{T})=\mathbf{I K F} \cdot(1+\mathbf{T I K F} \cdot(\mathrm{T}-\mathrm{Tnom}))$
$\mathbf{B V}(\mathrm{T})=\mathbf{B V} \cdot\left(1+\mathrm{TBV} 1 \cdot(\mathrm{~T}-\mathrm{Tnom})+\mathbf{T B V} 2 \cdot(\mathrm{~T}-\mathrm{Tnom})^{2}\right)$
$\mathbf{R S}(\mathrm{T})=\mathbf{R S} \cdot\left(1+\right.$ TRS1 $\left.\cdot(\mathrm{T}-\mathrm{Tnom})+\mathbf{T R S 2} \cdot(\mathrm{T}-\mathrm{Tnom})^{2}\right)$
$\mathbf{V J}(\mathrm{T})=\mathbf{V J} \cdot \mathrm{T} / \mathrm{Tnom}-3 \cdot \mathrm{Vt} \cdot \ln (\mathrm{T} / \mathrm{Tnom})-\mathrm{Eg}(\mathrm{Tnom}) \cdot \mathrm{T} / \mathrm{Tnom}+\mathrm{Eg}(\mathrm{T})$
$\operatorname{Eg}(\mathrm{T})=$ silicon bandgap energy $=1.16-.000702 \cdot \mathrm{~T}^{2} /(\mathrm{T}+1108)$
CJO(T) $=\mathbf{C J O} \cdot(1+\mathbf{M} \cdot(.0004 \cdot(\mathrm{~T}-\mathrm{Tnom})+(1-\mathrm{VJ}(\mathrm{T}) / \mathbf{V J})))$

Diode Equations for Noise

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power densities (per unit bandwidth).

Parasitic Resistance Thermal Noise

$\operatorname{In}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RS} /$ area $)$

Intrinsic Diode Shot and Flicker Noise

$\mathrm{In}^{2}=2 \cdot q \cdot \mathrm{Id}+\mathrm{KF} \cdot \mathrm{Id}^{\mathrm{AF}} /$ FREQUENCY

References

For a detailed description of p-n junction physics, refer to:
[1] A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons, Inc., 1967.
Also, for a generally detailed discussion of the U.C. Berkeley SPICE models, including the diode device, refer to:
[2] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, McGraw-Hill, 1988.

Voltage-Controlled Voltage Source
 Voltage-Controlled Current Source

General Form

```
E<name> <(+) node> <(-) node> <(+) controlling node> <(-) controlling
node> <gain>
E<name> <(+) node> <(-) node> POLY(<value>)
+ < <(+) controlling node> <(-) controlling node> >*
+ < <polynomial coefficient value> >*
E<name> <(+) <node> <(-) node> VALUE = { <expression> }
E<name><(+) <node> <(-) node> TABLE { <expression> } =
+ < <input value>,<output value> >*
E<name> <(+) node> <(-) node> LAPLACE { <expression> } =
+ { <transform> }
E<name> <(+) node> <(-) node> FREQ { <expression> } = [KEYWORD]
+ <<frequency value>,<magnitude value>,<phase value> >*
+ [DELAY = <delay value>]
E<name> <(+) node> <(-) node> CHEBYSHEV { <expression> } =
+ <[LP] [HP] [BP] [BR]>,<cutoff frequencies>*,\langleattenuation>*
```

```
EBUFF 1 2 10 11 1.0
```

EBUFF 1 2 10 11 1.0
EAMP 13 0 POLY(1) 26 0 0 500
ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
ESQROOT 5 O VALUE = {5V*SQRT(V(3,2))}
ET2 2 0 TABLE {V(ANODE,CATHODE)} = (0,0) (30,1)
ERC 5 0 LAPLACE {V(10)} = {1/(1+.001*s)}
ELOWPASS 5 0 FREQ {V(10)}=(0,0,0)(5kHz, 0,0)(6kHz -60, 0) DELAY=3.2ms
ELOWPASS 5 0 CHEBYSHEV {V(10)} = LP 800 1.2K .1dB 50dB
GBUFF 1 2 10 11 1.0
GAMP 13 0 POLY(1) 26 0 0 500
GNONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
GPSK 11 6 VALUE = {5MA*SIN(6.28*10kHz*TIME+V(3))}
GT ANODE CATHODE VALUE = {200E-6*PWR(V(1)*V(2),1.5)}
GLOSSY 5 0 LAPLACE {V(10)} = {exp(-sqrt(C*s*(R+L*s)))}

```

\section*{Examples}

Description
The Voltage-Controlled Voltage Source (E) and the Voltage-Controlled Current Source (G) devices have the same syntax. For a Voltage-Controlled Current Source just substitute G for E. G generates a current, whereas E generates a voltage.


\section*{Arguments and Options}

POLY(<value>)
Specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions.
\((+)\) and (-) nodes
Output nodes. Positive current flows from the (+) node through the source to the (-) node.
The \(\langle(+)\) controlling node> and \(\langle(-)\) controlling node>
Are in pairs and define a set of controlling voltages. A particular node can appear more than once, and the output and controlling nodes need not be different. The TABLE form has a maximum size of 2048 input/output value pairs.

\section*{FREQ}

If a DELAY value is specified, the simulator modifies the phases in the FREQ table to incorporate the specified delay value. This is useful for cases of tables which the simulator identifies as being non-causal. When this occurs, the simulator provides a delay value necessary to make the table causal. The new syntax allows this value to be specified in subsequent simulation runs, without requiring the user to modify the table.

If a KEYWORD is specified for FREQ tables, it alters the values in the table. The KEYWORD can be one of the following:
- MAG causes magnitude of frequency response to be interpreted as a raw value instead of dB .
- DB causes magnitude to be interpreted as dB (the default).
- RAD causes phase to be interpreted in radians.
- DEG causes phase to be interpreted in degrees (the default).
- R_I causes magnitude and phase values to be interpreted as real and imaginary magnitudes.

\section*{Comments}

The first form and the first two examples apply to the linear case; the second form and the third example are for the nonlinear case. The last five forms and examples are analog behavioral modeling (ABM) that have expression, look up table, Laplace transform, frequency response, and filtering. Refer to your PSpice user's guide for more information on analog behavioral modeling.

Chebyshev filters have two attenuation values, given in dB , which specify the pass band ripple and the stop band attenuation. They can be given in either order, but must appear after all of the cutoff frequencies have been given. Low pass (LP) and high pass (HP) have two cutoff frequencies, specifying the pass band and stop band edges, while band pass (BP) and band reject (BR) filters have four. Again, these can be given in any order.

A listing of the filter Laplace coefficients can be obtained for each stage by turning on the LIST option in Schematics (in the Analysis Setup dialog box, click Options). The output is written to the .out file after the simulation is complete.

For the linear case, there are two controlling nodes and these are followed by the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user's guide.
Expressions cannot be used for linear and polynomial coefficient values in a voltage-controlled voltage source device statement.

\section*{Basic SPICE Polynomial Expressions (POLY)}

PSpice A/D (and SPICE) use the following syntax:
```

<controlled source> <connecting nodes>
+POLY(<dimension>) <controlling input> <coefficients>

```
where
\begin{tabular}{ll}
\hline <controlled source> & \begin{tabular}{l} 
is < \([\mathrm{E}][\mathrm{F}][\mathrm{G}][\mathrm{H}]\) device name>, meaning the device type is one of \\
\(\mathrm{E}, \mathrm{F}, \mathrm{G}\), or H
\end{tabular} \\
<connecting nodes> & \begin{tabular}{l} 
specifies <(+node_name, -node_name)> pair between which the \\
device is connected
\end{tabular} \\
<dimension> & \begin{tabular}{l} 
is the dimension <value> of the polynomial describing the \\
controlling function
\end{tabular} \\
<controlling input> & \begin{tabular}{l} 
specifies <(+node_name, -node_name)>* pairs used as input to the \\
voltage controlled source (device types E and G), or \\
<V device name>* for the current controlled source (device types
\end{tabular} \\
<coefficients> & \begin{tabular}{l} 
F and H), and where the number of controlling inputs for either \\
case equals <dimension>
\end{tabular} \\
\begin{tabular}{l} 
specifies the coefficient <values>* for the polynomial transfer \\
function
\end{tabular}
\end{tabular}

If the source is one-dimensional (there is only one controlling source), \(\operatorname{POLY}(1)\) is required unless the linear form is used. If the source is multidimensional (there is more than one controlling source), the dimension needs to be included in the keyword, for instance POLY(2).

Caution must be exercised with the POLY form. For instance,
EWRONG 10 POLY(1) (1,0) . 51.0
tries to set node 1 to .5 volts greater than node 1 . In this case, any analyses which you specify will fail to calculate a result. In particular, PSpice A/D cannot calculate the bias point for a circuit containing EWRONG. This also applies to the VALUE form of EWRONG:
(EWRONG 10 VALUE \(=\{0.5 * V(1)\})\).

\section*{Basic Controlled Source Attributes}
\begin{tabular}{lll}
\hline Symbol Name & Attribute & Description \\
\hline E & GAIN & gain \\
F & & gain \\
G & & transconductance \\
H & transresistance \\
EPOLY, FPOLY, & & polynomial coefficient \\
GPOLY, HPOLY & & \\
\hline
\end{tabular}

PSpice A/D has a built-in capability allowing controlled sources to be defined with a polynomial transfer function of any degree and any dimension. Polynomials have associated
coefficients for each term. Consider a voltage-controlled source with voltages \(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \mathrm{~V}_{n}\). The coefficients are associated with the polynomial according to this convention:
```

 Vout \(=P_{0}+\)
 $P_{1} \cdot V_{1}+P_{2} \cdot V_{2}+\cdots P_{n} \cdot V_{n}+$
$P_{n+1} \cdot V_{1} \cdot V_{1}+P_{n+2} \cdot V_{1} \cdot V_{2}+\cdots P_{n+n} \cdot V_{1} \cdot V_{n}+$
$P_{2 n+1} \cdot V_{2} \cdot V_{2}+P_{2 n+2} \cdot V_{2} \cdot V_{3}+\cdots P_{2 n+n-1} \cdot V_{2} \cdot V_{n}+$
-
$P_{n!/(2(n-2)!)+2 n} \cdot V_{n} \cdot V_{n}+$
$P_{n!/(2(n-2)!)+2 n+1} \cdot V_{1}^{2} \cdot V_{1}+P_{n!/(2(n-2)!)+2 n+2} \cdot V_{1}{ }^{2} \cdot V_{2}+\cdots$

```

The above is written for a voltage-controlled voltage source, but the form is similar for the other sources.

The POLY part types shown in Basic Controlled Source Attributes are defined with a dimension of one, meaning there is only one controlling source. However, similar parts can be defined of any degree and dimension by creating part symbols with appropriate coefficient and TEMPLATE attributes, and the appropriate number of input pins.
The current-controlled parts ( \(F\), FPOLY, H, and HPOLY), contain a current-sensing voltage source. When netlisted, they generate two device declarations to the circuit file set: one for the controlled source and one for the independent current-sensing voltage source.
When defining a current-controlled source symbol of higher dimension, the TEMPLATE attribute must account for the same number of current-sensing voltage sources (equal to the dimension value). For example, a two dimensional current-controlled voltage source is described by the following polynomial equation:
Vout \(=C_{0}+C_{1} I_{1}+C_{2} I_{2}+C_{11} I_{1}{ }^{2}+C_{12} I_{1} I_{2}+C_{22} I_{2}{ }^{2}\)
To create the two dimensional HPOLY2 symbol, these attributes must be defined:
```

COEFFO = 1
COEFF1 = 1
COEFF2 = 1
COEFF11 = 1
COEFF12 = 1
COEFF22 = 1
COEFFS = @COEFF0 @C0EFF1 @COEFF2 @C0EFF11 @COEFF12 @COEFF22
TEMPLATE = H^@REFDES %5 %6 POLY(2) VH1^@REFDES VH2^@REFDES
\n+ @COEFFS \nVH1^@REFDES %1 %2 OV \nVH2^@REFDES %3 %4 OV

```

The TEMPLATE definition is actually contained on a single line. The VH1 and VH2 fragments after the \(\backslash \mathrm{n}\) characters represent the device declarations for the two current-sensing voltage sources required by this part. Also, the symbol graphics must have the appropriate number of pins. When placing an instance of HPOLY2 in your schematic, the COEFFn attributes must be appropriately set.

\section*{Implementation Examples}

Following are some examples of traditional SPICE POLY constructs and equivalent ABM parts which could be used instead.

\section*{Example 1: Four-Input Voltage Adder}

This is an example of a device which takes four input voltages and sums them to provide a single output voltage.
The representative polynomial expression would be as follows:
\(V_{\text {out }}=0.0+(1.0) V_{1}+(1.0) V_{2}+(1.0) V_{3}+(1.0) V_{4}\)
The corresponding SPICE POLY form would be as follows:
```

ESUM 100 101 POLY(4) (1,0) (2,0) (3,0) (4,0) 0.0 1.0 1.0

+ 1.01.0

```

This could be represented with a single ABM expression device configured with the following expression attributes:
```

EXP1 = V(1,0) +
EXP2 = V(2,0) +
EXP3 = V(3,0) +
EXP4 = V (4,0)

```

Following template substitution for the ABM device, the output becomes:
\(V(0 U T)=\{V(1,0)+V(2,0)+V(3,0)+V(4,0)\}\)

\section*{Example 2: Two-Input Voltage Multiplier}

This is an example of a device which takes two input voltages and multiplies them together resulting in a single output voltage.

The representative polynomial expression would be as follows:
\(V_{\text {out }}=0.0+(0.0) V_{1}+(0.0) V_{2}+(0.0) V_{1}^{2}+(1.0) V_{1} V_{2}\)
The corresponding SPICE POLY form would be as follows:
EMULT \(100101 \operatorname{POLY}(2)(1,0)(2,0) 0.00 .00 .00 .01 .0\)
This could be represented with a single MULT device. For additional examples of a voltage multiplier device, refer to the Analog Behavioral Modeling chapter of your PSpice user's guide.

\section*{Example 3: Voltage Squarer}

This is an example of a device that outputs the square of the input value.
For the one-dimensional polynomial, the representative polynomial expression reduces to:
Vout \(=P_{0}+P_{1} \cdot V+P_{2} \cdot V^{2}+\ldots P_{n} \cdot V^{n}\)
The corresponding SPICE POLY form would be as follows:
ESQUARE 100101 POLY(1) (1,0) 0.0 0.0 1.0
This could be represented by a single instance of the MULT part, with both inputs from the same net. This results in the following:
\(V_{\text {out }}=\left(V_{\text {in }}\right)^{2}\)

\section*{Current-Controlled Current Source}

\section*{Current-Controlled Voltage Source}
```

General Form
F<name> <(+) node> <(-) node>

+ <controlling V device name> <gain>
F<name> <(+) node> <(-) node> POLY(<value>)
+ <controlling V device name>*
+ < <polynomial coefficient value> >*
Examples FSENSE 1 2 VSENSE 10.0
FAMP 13 0 POLY(1) VIN 0 500
FNONLIN 100 101 POLY(2) VCNTRL1 VCINTRL2 0.0 13.6 0.2 0.005

```

Description The Current-Controlled Current Source (F) and the Current-Controlled Voltage Source (H) devices have the same syntax. For a Current-Controlled Voltage Source just substitute an H for the F . The H device generates a voltage, whereas the F device generates a current.

\section*{Arguments and Options}
\((+)\) and (-)
Output nodes. A positive current flows from the (+) node through the source to the (-) node. The current through the controlling voltage source determines the output current. The controlling source must be an independent voltage source ( V device), although it need not have a zero DC value.

POLY(<value>)
Specifies the number of dimensions of the polynomial. The number of controlling voltage sources must be equal to the number of dimensions.
Comments The first General Form and the first two examples apply to the linear case. The second form and the last example are for the nonlinear case.

For the linear case, there must be one controlling voltage source and its name is followed by the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user's guide.


Expressions cannot be used for linear and polynomial coefficient values in a current-controlled current source device statement.

\section*{Basic SPICE Polynomial Expressions (POLY)}

For more information on the POLY form, see Basic SPICE Polynomial Expressions. (POLY).

\title{
Independent Current Source \& Stimulus \\ \\ Independent Voltage Source \& Stimulus
} \\ \\ Independent Voltage Source \& Stimulus
}

General Form
```

I<name> <(+) node> <(-) node>

+ [[DC] <value>]
+ [AC <magnitude value> [phase value]]
+ [STIMULUS=<stimulus name>]
+ [transient specification]
IBIAS 13 0 2.3mA
IAC 2 3 AC .001
IACPHS 2 3 AC .001 90
IPULSE 1 0 PULSE(-1mA 1mA 2ns 2ns 2ns 50ns 100ns)
I3 26 77 DC .002 AC 1 SIN(.002 .002 1.5MEG)

```
Examples

\section*{Description}

This element is a current source. Positive current flows from the (+) node through the source to the (-) node: in the first example, IBIAS drives node 13 to have a negative voltage. The default value is zero for the DC, AC, and transient values. None, any, or all of the DC, AC, and transient values can be specified. The AC phase value is in degrees. The pulse and exponential examples are explained later in this section.


The Independent Current Source \& Stimulus (I) and the Independent Voltage Source \& Stimulus (V) devices have the same syntax. For an Independent Voltage Source \& Stimulus just substitute a V for the I. The V device functions identically and has the same syntax as the I device, except that it generates voltage instead of current.
The variables TSTEP and TSTOP, which are used in defaulting some waveform parameters, are set by the TRAN (Transient Analysis) command. TSTEP is <print step value> and TSTOP is <final time value>. The .TRAN command can be anywhere in the circuit file; it need not come after the voltage source.

\section*{<Chapter}

\section*{Arguments and Options}

\author{
<stimulus name> \\ References a .STIMULUS (Stimulus) definition. \\ [transient specification]
}
\begin{tabular}{ll} 
Use this value... & To produce this result... \\
EXP (<parameters>) & an exponential waveform \\
PULSE (<parameters>) & a pulse waveform \\
PWL (<parameters>) & a piecewise linear waveform \\
SFFM (<parameters>) & a frequency-modulated waveform \\
SIN (<parameters>) & a sinusoidal waveform
\end{tabular}

\section*{Independent Current Source \& Stimulus (EXP)}

General Form EXP (<i1><i2><td1><tc1><td2><tc2>)
Examples IRAMP \(105 \operatorname{EXP}\left(\begin{array}{lllll}1 & 5 & 1 & .2 & 2\end{array}\right.\). \()\)
Waveform Parameters
\begin{tabular}{llll}
\hline Parameter & Description & Units & Default \\
\hline <i1> & Initial current & amp & none \\
<i2> & Peak current & amp & none \\
<td1> & Rise (fall) delay & sec & 0 \\
<tc1> & Rise (fall) time constant & sec & TSTEP \\
<td2> & Fall (rise) delay & sec & <td1>+TSTEP \\
<tc2> & Fall (rise) time constant & sec & TSTEP \\
\hline
\end{tabular}

Description The EXP form causes the current to be <i1> for the first <td1> seconds. Then, the current decays exponentially from <i1> to <i2> using a time constant of <tc1>. The decay lasts td2-td1 seconds. Then, the current decays from <i2> back to <il> using a time constant of <tc2>. Independent Current Source and Stimulus Exponential Waveform Formulas describe the EXP waveform.


\section*{Independent Current Source and Stimulus Exponential Waveform Formulas}
\begin{tabular}{ll}
\hline Time Period & Value \\
\hline 0 to \(\langle\mathrm{td} 1>\) & i 1 \\
\(\langle\mathrm{td} 1>\) to \(\langle\mathrm{td} 2>\) & \(\mathrm{i} 1+(\mathrm{i} 2-\mathrm{i} 1) \cdot\left(1-e^{-(\mathrm{TIME}-\mathrm{td} 1) / \mathrm{tc} 1)}\right.\) \\
\(\langle\mathrm{td} 2>\) to TSTOP & \(\mathrm{i} 1+(\mathrm{i} 2-\mathrm{i} 1) \cdot\left(\left(1-e^{-(\mathrm{TIME}-\mathrm{td} 1) / \mathrm{tc} 1}\right)-\left(1-e^{-(\mathrm{TIME}-\mathrm{td} 2) / \mathrm{tc} 2}\right)\right)\) \\
\hline
\end{tabular}

\section*{Independent Current Source \& Stimulus (PULSE)}

General Form PULSE (<i1><i2><td><tr><tf><pw><per>)
Example ISW 105 PULSE(1A 5A 1 sec .1 sec .4 sec .5 sec 2 sec\()\)
Waveform Parameters
\begin{tabular}{llll}
\hline Parameters & Description & Units & Default \\
\hline <i1> & Initial current & amp & none \\
<i2> & Pulsed current & amp & none \\
<td> & Delay & sec & 0 \\
<tf> & Fall time & sec & TSTEP \\
<tr> & Rise time & sec & TSTEP \\
<pw> & Pulse width & sec & TSTOP \\
<per> & Period & sec & TSTOP \\
\hline
\end{tabular}

Description
The PULSE form causes the current to start at <i1>, and stay there for <td> seconds. Then, the current goes linearly from <i1> to <i2> during the next <tr> seconds, and then the current stays at <i2> for <pw> seconds. Then, it goes linearly from <i2> back to <i1> during the next \(<t \mathrm{f}>\) seconds. It stays at <i1> for per-(tr\(+\mathrm{pw}+\mathrm{tf})\) seconds, and then the cycle is repeated except for the initial delay of \(\langle t d\rangle\) seconds. Independent Current Source and Stimulus Pulse Waveform Formulas describe the PULSE waveform.


\section*{Independent Current Source and Stimulus}

Pulse Waveform Formulas
\begin{tabular}{ll}
\hline Time & Value \\
\hline 0 & i1 \\
td & i1 \\
td+tr & i2 \\
td+tr+pw & i2 \\
td+tr+pw+tf & i1 \\
td+per & i1 \\
td+per+tr & i2 \\
. & \(\cdot\) \\
. & \(\cdot\) \\
. & \\
\hline
\end{tabular}

\section*{Independent Current Source \& Stimulus (PWL)}

\section*{General Form}
```

PWL

+ [TIME_SCALE_FACTOR=\langlevalue>]
+ [VALUE_SCALE_FACTOR=\langlevalue>]
+ (corner_points)*

```
where corner_points are:
```

(<tn>, <in>) to specify a point
FILE〈filename> to read point values from a file
REPEAT FOR <n> (corner_points)*
ENDREPEAT to repeat <n> times
REPEAT FOREVER (corner_points)*
ENDREPEAT
to repeat forever

```
```

Examples
v1 1 2 PWL (0,1) (1.2,5) (1.4,2) (2,4) (3,1)
v2 3 4 PWL REPEAT FOR 5 (1,0) (2,1) (3,0) ENDREPEAT
v3 5,6 PWL REPEAT FOR 5 FILE DATA1.TAB

+ ENDREPEAT
v4 7 8 PWL TIME_SCALE_FACTOR=0.1
+ REPEAT FOREVER
+ REPEAT FOR 5 (1,0) (2,1) (3,0) ENDREPEAT
+ REPEAT FOR 5 FILE DATAI.TAB
+ ENDREPEAT
+ ENDREPEAT

```
n volt square wave (where n is \(1,2,3,4\), then 5); \(75 \%\) duty cycle; 10 cycles; 1 microseconds per cycle:
```

.PARAM N=1
.STEP PARAM N 1,5,1
V1 1 0 PWL

+ TIME_SCALE_FACTOR=1e-6 ;al1 time units are scaled to
+ microseconds
+ REPEAT FOR 10
+ (.25, 0)(.26, {N})(.99, {N})(1, 0)
+ ENDREPEAT

```

5 volt square wave; \(75 \%\) duty cycle; 10 cycles; 10 microseconds per cycle; followed by \(50 \%\) duty cycle n volt square wave (where n is \(1,2,3,4\), then 5 ) lasting until the end of simulation:
```

.PARAM N=.2
.STEP PARAM N .2, 1.0, .2
V1 1 0 PWL

+ TIME_SCALE_FACTOR=1e-5 ; all time units are
+ scaled to 10 us
+ VALUE_SCALE_FACTOR=5
+ REPEAT FOR 10
+ (.25, 0)(.26, 1)(.99, 1)(1, 0)
+ ENDREPEAT
+ REPEAT FOREVER
+ (+.50, 0)
+ (+.01, {N}) ; iteration time .51
+ (+.48, {N}) ; iteration time .99
+ (1, 0)
+ ENDREPEAT

```

Assuming that a PWL specification has been given for a device to generate two triangular waveforms:
```

V3 1 0 PWL (1ms, 1)(2ms, 0)(3ms, 1)(4ms, 0)

```

Or, to replace the above with
V3 10 PWL FILE TRIANGLE. IN
where the file triangle.in would need to contain:
\[
(1 \mathrm{~ms}, 1)(2 \mathrm{~ms}, 0)(3 \mathrm{~ms}, 1)(4 \mathrm{~ms}, 0)
\]

\section*{Waveform Parameters}
\begin{tabular}{llll}
\hline Parameter & Description & Units & Default \\
\hline <tn> & time at corner & seconds & none \\
<vn> & voltage at corner & volts & none \\
<n> & number of repetitions & positive integer, 0, or -1 & none \\
\hline
\end{tabular}
* <tn> and <n> cannot be expressions; <vn> may be an expression.

Description The PWL form describes a piecewise linear waveform. Each pair of time-current values specifies a corner of the waveform. The current at times between corners is the linear interpolation of the currents at the corners.


\section*{Arguments and Options}
<time_scale_factor> and/or <value_scale_factor>
Can be included immediately after the PWL keyword to show that the time and/or current value pairs are to be multiplied by the appropriate scale factor. These scale factors can be expressions, in which case they are evaluated once per outer simulation loop, and thus should be composed of expressions not containing references to voltages or currents. <tn> and <in>

The transient specification corner points for the PWL waveform, as shown in the first example. The <in> can be an expression having the same restrictions as the scaling keywords, but <tn> must be a literal.
<file name>
The text file that supplies the time-current (<tn><in>) pairs. The contents of this file are read by the same parser that reads the circuit file, so that engineering units (e.g., 10us) are correctly interpreted. Note that the continuation + signs in the first column are unnecessary and therefore discouraged.

A typical file can be created by editing an existing PWL specification, replacing all + signs with blanks (to avoid unintentional +time). Only numbers (with units attached) can appear in the file; expressions for <tn> and <n> values are invalid. All absolute time points in <file name> are with respect to the last (<tn> <in>) entered. All relative time points are with respect to the last time point.

REPEAT ... ENDREPEAT
These loops permit repetitions.
They can appear anywhere a (<tn> <in>) pair can appear. Absolute times within REPEAT loops are with respect to the start of the current iteration. The REPEAT ... ENDREPEAT specifications can be nested to any depth. Make sure that the current value associated with the beginning and ending time points (within the same REPEAT loop or between adjacent REPEAT loops), are the same when 0 is specified as the first point in a REPEAT loop.
<n>
A REPEAT FOR - 1 ... ENDREPEAT is treated as if it had been REPEAT FOREVER ... ENDREPEAT. A REPEAT FOR \(0 \ldots\) ENDREPEAT is ignored (other than syntax checking of the enclosed corner points).

\section*{Independent Current Source \& Stimulus (SFFM)}

General Form SFFM (<ioff><iampl><fc><mod><fm>)
Example IMOD 105 SFFM(2 18 Hz 4 Hz\()\)

Waveform Parameters
\begin{tabular}{llll}
\hline Parameters & Description & Units & Default \\
\hline <ioff> & offset current & amp & none \\
<iampl> & peak amplitude of current & amp & none \\
<fc> & carrier frequency & hertz & \(1 /\) TSTOP \\
<mod> & modulation index & & 0 \\
<fm> & modulation frequency & hertz & \(1 /\) TSTOP \\
\hline
\end{tabular}

Description The SFFM (Single-Frequency FM) form causes the current, as illustrated below, to follow the formula:
```

ioff + iampl\cdotsin(2p\cdotfc·TIME + mod·sin(2p\cdotfm·TIME))

```


\section*{Independent Current Source \& Stimulus (SIN)}

General Form SIN (<ioff><iampl><freq><td><df><phase>)
Examples ISIG 105 SIN(2 25 Hz 1 sec 130 )
Waveform Parameters
\begin{tabular}{llll}
\hline Parameters & Description & Units & Default \\
\hline <ioff> & offset current & amp & none \\
<iampl> & peak amplitude of current & amp & none \\
<freq> & frequency & hertz & \(1 /\) TSTOP \\
<td> & delay & sec & 0 \\
<df> & damping factor & \(\mathrm{sec}^{-1}\) & 0 \\
<phase> & phase & degree & 0 \\
\hline
\end{tabular}

Description
The sinusoidal (SIN) waveform causes the current to start at <ioff> and stay there for <td> seconds.
Then, the current becomes an exponentially damped sine wave. Independent Current Source and Stimulus Sinusoidal Waveform Formulas describe the SIN waveform.


The SIN waveform is for transient analysis only. It does not have any effect on AC analysis. To give a value to a current during AC analysis, use an AC specification, such as:

\section*{IAC 30 AC 1mA}
where IAC has an amplitude of one milliampere during AC analysis, and can be zero during transient analysis. For transient analysis use, for example:

ITRAN 30 SIN(0 1mA 1kHz)
where ITRAN has an amplitude of one milliampere during transient analysis and is zero during AC analysis. Refer to your PSpice user's guide.

\section*{Independent Current Source and Stimulus}

Sinusoidal Waveform Formulas
\begin{tabular}{ll}
\hline Time period & Value \\
\hline to <td> & ioff \(+\mathrm{iampl} \cdot \sin \left(2 \pi \cdot\right.\) phase \(\left./ 360^{\circ}\right)\) \\
\(\langle\mathrm{td}\rangle\) to TSTOP & ioff \(+\mathrm{iampl} \cdot \sin \left(2 \pi \cdot\left(\mathrm{freq} \cdot(\mathrm{TIME}-\mathrm{td})+\mathrm{phase} / 360^{\circ}\right)\right) \cdot e^{-(\mathrm{TIME}-\mathrm{td}) \cdot \mathrm{df}}\) \\
\hline
\end{tabular}

\section*{Inductor}


\section*{Arguments and Options}
\((+)\) and (-) nodes
Define the polarity when the inductor has a positive voltage across it.
The first node listed (or pin one in Schematics), is defined as positive. The voltage across the component is therefore defined as the first node voltage less the second node voltage.
Positive current flows from the \((+)\) node through the inductor to the (-) node. Current flow from the first node through the component to the second node is considered positive.
[model name]
If [model name] is left out, then the effective value is <value>.
If [model name] is specified, then the effective value is given by the model parameters; see Inductance Value Formula.

If the inductor is associated with a Core model, then the effective value is the number of turns on the core. Otherwise, the effective value is the inductance. See the Model Form statement for the K device in Inductor Coupling (and Magnetic Core) for more information on the Core model.

\section*{<initial value>}

Is the initial current through the inductor during the bias point calculation.
It can also be specified in a circuit file using a .IC statement as follows:
```

.IC I(L<name>) <initial value>

```

For details on using the .IC statement in a circuit file, see
.IC (Initial Bias Point Condition) and refer to your PSpice user's guide for more information.

\section*{<Chapter}

\section*{Schematics Symbols}

For standard L parts, the effective value of the part is set directly by the VALUE attribute.
In general, inductors should have positive component values (VALUE attribute). In all cases, components must not be given a value of zero.
However, there are cases when negative component values are desired. This occurs most often in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming from the real to the RLC equivalent, it is possible to end up with negative component values.
PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise analyses. A transient analysis may fail for a circuit with negative components. Negative inductors may create instabilities in time that the analysis cannot handle.
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Symbol \\
Name
\end{tabular} & \begin{tabular}{l} 
Model \\
Type
\end{tabular} & Attribute & Attribute Description \\
\hline L & inductor & VALUE & \begin{tabular}{l} 
inductance \\
\end{tabular} \\
& IC & \begin{tabular}{l} 
initial current through the inductor during \\
bias point calculation
\end{tabular} \\
XFRM_LINEAR & transformer & L1_VALUE & winding inductances in Henries \\
& & L2_VALUE & COUPLING \\
coefficient of mutual coupling (must be \\
K_LINEAR & transformer & Ln & \begin{tabular}{l} 
between 0 and 1) \\
inductor reference designator
\end{tabular} \\
\hline
\end{tabular}

\section*{Breakout Parts}

For non-stock passive and semiconductor devices, Schematics provides a set of breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.Another approach is to use the model editor to derive an instance model and customize this. For example, you could add device and/or lot tolerances to model parameters.
Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix BREAK. By default, the model name is the same as the part name and references the appropriate device model with all parameters set at their default. For instance, the DBREAK part references the DBREAK model which is derived from the intrinsic PSpice A/D D model (.MODEL DBREAK D).

For breakout part LBREAK, the effective value is computed from a formula that is a function of the specified VALUE attribute.
\begin{tabular}{lllll}
\hline \begin{tabular}{l} 
Part \\
Type
\end{tabular} & \begin{tabular}{c} 
Symbol \\
Name
\end{tabular} & \begin{tabular}{l} 
Symbol \\
Library File
\end{tabular} & \begin{tabular}{l} 
Attribut \\
\(\mathbf{e}\)
\end{tabular} & Description \\
\hline inductor & LBREAK & breakout.s1b & VALUE & inductance \\
& & & IC & \begin{tabular}{l} 
initial current through the inductor \\
during bias point calculation
\end{tabular} \\
& & & MODEL & IND model name \\
\hline
\end{tabular}

\section*{Inductor Model Parameters}
\begin{tabular}{llll}
\hline Model Parameters \({ }^{*}\) & Description & Units & Default \\
\hline L & Inductance multiplier & & 1 \\
IL1 & Linear current coefficient & \(\mathrm{amp}^{-1}\) & 0 \\
IL2 & Quadratic current coefficient & \(\mathrm{amp}^{-2}\) & 0 \\
TC1 & Linear temperature coefficient & \({ }^{\circ} \mathrm{C}^{-1}\) & 0 \\
TC2 & Quadratic temperature coefficient & \({ }^{\circ} \mathrm{C}^{-2}\) & 0 \\
T_ABS & Absolute temperature & \({ }^{\circ} \mathrm{C}\) & \\
T_MEASURED & Measured temperature & \({ }^{\circ} \mathrm{C}\) & \\
T_REL_GLOBAL & Relative to current temperature & \({ }^{\circ} \mathrm{C}\) & \\
T_REL_LOCAL & Relative to AKO model temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}
* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (Model).

\section*{Inductor Equations}

\section*{Inductance Value Formula}

If [model name] is specified, then the effective value is given by:
```

\langlevalue\rangle·L.(1+IL1 I I+IL2 I I')

```
where <value> is normally positive (though it can be negative, but not zero). Tnom is the nominal temperature (set using TNOM option).

\section*{Inductor Equation for Noise}

The inductor does not have a noise model.

\section*{MOSFET}

\section*{General Form}
```

M<name> <drain node> <gate node> <source node>

+ <bulk/substrate node> <model name>
+ [L=\langlevalue\rangle] [W=\langlevalue\rangle]
+ [AD=\langlevalue\rangle] [AS=\langlevalue\rangle]
+ [PD=\langlevalue\rangle] [PS=\langlevalue\rangle]
+ [NRD=\langlevalue\rangle] [NRS=\langlevalue\rangle]
+ [NRG=\langlevalue\rangle] [NRB=\langlevalue\rangle]
+ [M=\langlevalue>]
M1 14 2 13 0 PNOM L=25u W=12u
M13 15 3 0 0 PSTRONG
M16 17 3 0 0 PSTRONG M=2
M28 0 2 100 100 NWEAK L=33u W=12u
+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10
.MODEL <model name> NMOS [model parameters]
.MODEL <model name> PMOS [model parameters]

```
Examples
Model Form

Description The MOSFET is modeled as an intrinsic MOSFET using ohmic resistances in series with the drain, source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel with the drain-source channel.


\section*{Arguments and Options}

L and W are the channel length and width, which are decreased to get the effective channel length and width. They can be specified in the device, .MODEL (Model), or .OPTIONS (Analysis Options) statements. The value in the device statement supersedes the value in the model statement, which supersedes the value in the .OPTIONS statement. Defaults for L and W can be set in the .OPTIONS statement. If L or W defaults are not set, their default value is 100 u .
[L=<value>] [W=<value>] cannot be used in conjunction with Monte Carlo analysis.

AD and AS
The drain and source diffusion areas. Defaults for AD and AS can be set in the .OPTIONS statement. If AD or AS defaults are not set, their default value is 0 .
PD and PS
The drain and source diffusion perimeters. Their default value is 0 .
JS
Can specify the drain-bulk and source-bulk saturation currents. JS is multiplied by AD and AS.

IS
Can also specify the drain-bulk and source-bulk saturation currents. IS is an absolute value.
CJ
Can specify the zero-bias depletion capacitances. CJ is multiplied by AD and AS. CJSW

Can also specify the zero-bias depletion capacitances. CJSW is multiplied by PD and PS. CBD and CBS

Can also specify the zero-bias depletion capacitances. CBD and CBS are absolute values.
NRD, NRS, NRG, and NRB
Multipliers (in units of squares) that can be multiplied by RSH to yield the parasitic (ohmic) resistances of the drain (RD), source (RS), gate (RG), and substrate (RB), respectively. NRD and NRS default to 1 , and NRG and NRB default to 0 .

Consider a square sheet of resistive material. Analysis shows that the resistance between two parallel edges of such a sheet depends upon its composition and thickness, but is independent of its size as long as it is square. In other words, the resistance will be the same whether the square's edge is \(2 \mathrm{~mm}, 2 \mathrm{~cm}\), or 2 m . For this reason, the sheet resistance of such a layer, abbreviated RSH, has units of ohms per square.
M
A device multiplier ( default \(=1\) ), which simulates the effect of multiple devices in parallel.

The effective width, overlap and junction capacitances, and junction currents of the MOSFET are multiplied by M. The parasitic resistance values (e.g., RD and RS) are divided by M. Note the third example: it shows a device twice the size of the second example.

\section*{Comments}

The simulator provides six MOSFET device models, which differ in the formulation of the I-V characteristic. The LEVEL parameter selects between different models as follows. For more information, see References.

LEVEL=1 Shichman-Hodges model (see reference [1])
LEVEL=2 geometry-based, analytic model (see reference [2])
LEVEL=3 semi-empirical, short-channel model (see reference [2])
LEVEL=4 BSIM model (see reference [3])
LEVEL=5 (No longer supported.)
LEVEL=6 BSIM3 model version 2.0 (see reference [7])
LEVEL=7 BSIM3 model version 3.0 (see reference [8])

\section*{Schematics Symbols}

The following table lists the set of MOSFET breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Symbol \\
Name
\end{tabular} & \begin{tabular}{l} 
Model \\
Type
\end{tabular} & Attribute & Attribute Description \\
\hline MBREAKN & NMOS & L & channel length \\
MBREAKN3 & PMOS & W & channel width \\
MBREAKN4 & & AD & drain diffusion area \\
MBREAKP & & AS & source diffusion area \\
MBREAKP3 & & PD & drain diffusion perimeter \\
MBREAKP4 & & PS & source diffusion perimeter \\
& & NRD & relative drain resistivity (in squares) \\
& & NRS & relative source resistivity (in squares) \\
& NRG & relative gate resistivity (in squares) \\
& & NRB & relative substrate resistivity (in squares) \\
& & M & device multiplier \\
& & MODEL & NMOS or PMOS model name \\
& & &
\end{tabular}

\section*{Setting operating temperature}

Operating temperature can be set to be different from the global circuit temperature by defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL. Additionally, model parameters can be assigned unique measurement temperatures using the T_MEASURED model parameter. For more information, see MOSFET Model Parameters.

\section*{MOSFET Model Parameters}

\section*{For All Model Levels}

The parameters common to all model levels are primarily parasitic element values such as series resistance, overlap and junction capacitance, and so on.

\section*{Model Levels 1, 2, and 3}

The DC characteristics of the first three model levels are defined by the parameters VTO, KP, LAMBDA, PHI, and GAMMA. These are computed by the simulator if process parameters (e.g., TOX, and NSUB) are given, but the user-specified values always override. VTO is positive (negative) for enhancement mode and negative (positive) for depletion mode of N -channel (P-channel) devices.

The default value for TOX is \(0.1 \mu\) for Levels 2 and 3, but is unspecified for Level 1, which discontinues the use of process parameters.
For MOSFETs the capacitance model has been changed to conserve charge, affecting only the Level 1, 2, and 3 models.
Effective length and width for device parameters are calculated with the formula:
\(P_{i}=P_{0}+P_{L} / L_{e}+P_{w} / W_{e}\)
where:
\(\mathrm{L}_{\mathrm{e}}=\) effective length \(=\mathrm{L}-(\mathrm{LD} \cdot 2)\)
\(\mathrm{W}_{\mathrm{e}}=\) effective width \(=\mathrm{W}-(\mathrm{WD} \cdot 2)\)
See ,MODEL (Model) for more information.

\section*{Model Level 4}

2
Unlike the other models in PSpice, the BSIM model is designed for use with a process characterization system that provides all parameters. Therefore, there are no defaults specified for the parameters, and leaving one out can cause problems.

The LEVEL=4 (BSIM1) model parameters are all values obtained from process characterization, and can be generated automatically. Reference [4] of References describes a means of generating a process file, which must then be converted into MODEL (Model) statements for inclusion in the Model Library or circuit file. (The simulator does not read process files.)
The level 4 (BSIM) and level 6 (BSIM3 version 2) models have their own capacitance model, which conserves charge and remains unchanged. References [6] and [7] describe the equations for the capacitance due to channel charge.
In the following MOSEET Model Parameters list, parameters marked with a \(\zeta\) in the Default column also have corresponding parameters with a length and width dependency. For
example, VFB is a basic parameter using units of volts, and LVFB and WVFB also exist and have units of volt \(\cdot \mu\). The formula
\(P_{i}=P_{0}+P_{L} / L_{e}+P_{w} / W_{e}\)
is used to evaluate the parameter for the actual device, where:
\(L_{e}=\) effective length \(=L-D L\)
\(\mathrm{W}_{\mathrm{e}}=\) effective width \(=\mathrm{W}-\mathrm{DW}\)

\section*{Model Level 6 (BSIM3 version 2.0)}

The Level 6 Advanced parameters should not be changed unless the detail structure of the device is known and has specific, meaningful values.
The BSIM3 model is a physical model using extensive built-in dependencies of important dimensional and processing parameters. It includes the major effects that are important to modeling deep-submicrometer MOSFETs, such as threshold voltage reduction, nonuniform doping, mobility reduction due to the vertical field, bulk charge effect, carrier velocity saturation, drain-induced barrier lowering (DIBL), channel length modulation (CLM), hot-carrier-induced output resistance reduction, subthreshold conduction, source/drain parasitic resistance, substrate current induced body effect (SCBE), and drain voltage reduction in LDD structure. For additional, detailed model information, see References.

\section*{Additional Notes}

Note 1 If any of the following BSIM3 version 2.0 model parameters are not explicitly specified, they are calculated using the following equations.
\[
\begin{aligned}
& V T H O=V F B+P H I+K \sqrt{P H I} \\
& K 1=G A M M A 2-2 \cdot K 2 \sqrt{(P H I-V B M)} \\
& K 2=\frac{(\mathbf{G A M M A 1}-\mathbf{G A M M A 2})(\sqrt{\mathrm{PHI}-V B X}-\sqrt{\mathbf{P H I}})}{2 \sqrt{\mathrm{PHI}}(\sqrt{\mathbf{P H I}-V B X}-\sqrt{\mathrm{PHI}})+\mathrm{VBM}} \\
& V B F=V T H 0-P H I-K 1 \sqrt{P H I} \\
& \mathbf{P H I}=2 \mathrm{~V}_{\mathrm{tm}} \ln \left(\frac{\text { NPEAK }}{\mathrm{n}_{\mathrm{i}}}\right) \\
& \text { GAMMA1 }=\frac{\sqrt{2 \mathrm{q} \varepsilon_{\mathrm{si}} \text { NPEAK }}}{\text { COX }} \\
& \text { GAMMA2 }=\frac{\sqrt{2 q_{\varepsilon_{\mathrm{si}} N S U B}}}{\mathbf{C O X}} \\
& \mathbf{V B X}=\mathbf{P H I}-\mathrm{q} \cdot \mathbf{N P E A K} \cdot \mathbf{X T}^{2} /\left(2 \varepsilon_{\mathrm{si}}\right) \\
& \text { LITL }=\sqrt{\frac{\varepsilon_{\mathrm{si}} \mathrm{TOXX}_{\mathrm{j}}}{\varepsilon_{\mathrm{ox}}}}
\end{aligned}
\]

Note 2 Default values listed for the BSIM3 version 2.0 parameters UA, UB, UC, UA1, AB1, and UC1 are used for simplified mobility modeling.

\section*{Model Level 7 (BSIM3 version 3.0)}

The BSIM3 version 3 model is a deep submicron MOSFET model with the same physical basis as the BSIM3 version 2 model, but with a number of major enhancements, such as a single I-V expression to describe current and output conductance in all regions of device operation, better modeling of narrow width devices, a reformulated capacitance model to improve short and narrow geometry models, a new relaxation time model to improve transient modeling, and improved model fitting of various W/L ratios using one parameter set. BSIM3 version 3 retains the extensive built-in dependencies of dimensional and processing parameters of BSIM3 version 2. For additional, detailed model information, see Reference [8] of References.

\section*{Additional Notes}

Note 1 If any of the following BSIM3 version 3.0 model parameters are not explicitly specified, they are calculated using the following equations:

If VTHO is not specified, then:
\(\mathrm{VTHO}=\mathrm{VFB}+\phi_{\mathrm{S}} \mathrm{K} 1 \sqrt{\phi_{\mathrm{s}}}\)
where:
VFB=-1.0
If VTHO is specified, then:
\[
\mathrm{VFB}=\mathrm{VTHO}-\phi_{\mathrm{s}}+\mathrm{K} 1 \sqrt{\phi_{\mathrm{s}}}
\]
\(\mathrm{VBX}=\phi_{\mathrm{s}}-\frac{\mathrm{q} \cdot \mathrm{NCH} \cdot \mathrm{XT}^{2}}{2 \cdot \varepsilon_{\mathrm{si}}}\)
\(\mathbf{C F}=\left(\frac{2 \varepsilon_{\mathrm{ox}}}{\pi}\right) \ln \left(1+\frac{4 \times 10^{-7}}{\text { TOX }}\right)\)
where
\[
\begin{aligned}
& \text { ere } \\
& \mathrm{E}_{\mathrm{g}}(\mathrm{~T})=\text { the energy bandgap at temperature } \mathrm{T}=1.16-\frac{\left(7.02 \cdot 10^{-4} \cdot \mathrm{~T}^{2}\right)}{(\mathrm{T}+1108)}
\end{aligned}
\]

Note 2 If K1 AND K2 are not specified, they are calculated using the following equations:
\[
\begin{aligned}
& \text { K1 }=\text { GAMMA2 }-2 \text { K2 } \sqrt{\phi_{\mathrm{s}}-\text { VBM }} \\
& \text { K2 }=\frac{(\text { GAMMA1 }- \text { GAMMA2 })\left(\sqrt{\phi_{\mathrm{S}}-\text { VBX }}-\sqrt{\phi_{\mathrm{s}}}\right)}{2 \sqrt{\phi_{\mathrm{s}}}\left(\sqrt{\phi_{\mathrm{s}}-\text { VBM }}-\sqrt{\phi_{\mathrm{s}}}\right)+\text { VBM }}
\end{aligned}
\]
where:
\[
\phi_{\mathrm{s}}=2 \mathrm{Vt} \cdot \ln \left(\frac{\mathrm{NCH}}{\mathrm{n}_{\mathrm{i}}}\right)
\]
\[
\begin{aligned}
& \mathrm{Vt}=\frac{\mathrm{k} \cdot \mathrm{~T}}{\mathrm{q}} \\
& \mathrm{n}_{\mathrm{i}}=1.45 \cdot 10^{10}\left(\frac{\mathrm{~T}}{300.15}\right)^{1.5} \quad \exp \left(21.5565981-\frac{\mathrm{E}_{\mathrm{g}}(\mathrm{~T})}{2 \mathrm{Vt}}\right)
\end{aligned}
\]

Note 3 If NCH is not given and GAMMA1 is given, then:
\[
\mathbf{N C H}=\frac{\mathbf{G A M M A 1}^{2} \cdot(\mathrm{Cox})^{2}}{2 \mathrm{q} \cdot \varepsilon_{\mathrm{si}}}
\]

If neither GAMMA1 nor NCH is given, then NCH has a default value of \(1.7 \mathrm{e} 23 \mathrm{1} / \mathrm{m}^{3}\) and GAMMA1 is calculated from NCH:

GAMMA1 \(=\frac{\sqrt{2 \mathrm{q} \cdot \varepsilon_{\mathrm{si}} \cdot \mathrm{NCH}}}{\text { Cox }}\)
If GAMMA2 is not given, then:
GAMMA2 \(=\frac{\sqrt{2 \mathrm{q} \cdot \varepsilon_{\mathrm{si}} \cdot \text { NSUB }}}{\text { Cox }}\)
Note 3 If CGSO is not given and DLC>0, then:
CGSO= (DLC • Cox) - CGS1
If the previously calculated CGSO<0, then:
CGSO=0
Else:
CGSO=0.6 • XJ • Cox

Note 4 If CGDO is not given and DLC \(>0\), then:
```

CGDO= (DLC · Cox) - CGD1

```

If the previously calculated \(\mathbf{C G D O}<0\), then
CGDO=0
Else:
CGDO \(=0.6 \cdot \mathbf{X J} \cdot\) Cox

\section*{MOSFET Model Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline & All Levels & & \\
\hline AF & flicker noise exponent & & 1 \\
\hline CBD & zero-bias bulk-drain \(p-n\) capacitance & farad & 0 \\
\hline CBS & zero-bias bulk-source \(p\) - \(n\) capacitance & farad & 0 \\
\hline CGBO & gate-bulk overlap capacitance/channel length & farad/meter & 0 \\
\hline CGDO & gate-drain overlap capacitance/channel width & farad/meter & 0 \\
\hline cGso & gate-source overlap capacitance/channel width & farad/meter & 0 \\
\hline CJ & bulk \(p-n\) zero-bias bottom capacitance/area & farad/meter \({ }^{2}\) & 0 \\
\hline CJSW & bulk \(p\) - \(n\) zero-bias sidewall capacitance/length & farad/meter & 0 \\
\hline FC & bulk \(p\)-n forward-bias capacitance coefficient & & 0.5 \\
\hline GDSNOI & channel shot noise coefficient (use with NLEV=3) & & 1 \\
\hline IS & bulk \(p\) - \(n\) saturation current & amp & 1E-14 \\
\hline JS & bulk \(p-n\) saturation current/area & \(\mathrm{amp} /\) meter \(^{2}\) & 0 \\
\hline JSSW & bulk \(p-n\) saturation sidewall current/length & amp/meter & 0 \\
\hline KF & flicker noise coefficient & & 0 \\
\hline L & channel length & meter & DEFL \\
\hline LEVEL & model index & & 1 \\
\hline MJ & bulk \(p-n\) bottom grading coefficient & & 0.5 \\
\hline MJSW & bulk \(p-n\) sidewall grading coefficient & & 0.33 \\
\hline N & bulk \(p\)-n emission coefficient & & 1 \\
\hline NLEV & noise equation selector & & 2 \\
\hline PB & bulk \(p-n\) bottom potential & volt & 0.8 \\
\hline PBSW & bulk \(p-n\) sidewall potential & volt & PB \\
\hline RB & bulk ohmic resistance & ohm & 0 \\
\hline RD & drain ohmic resistance & ohm & 0 \\
\hline RDS & drain-source shunt resistance & ohm & infinite \\
\hline RG & gate ohmic resistance & ohm & 0 \\
\hline RS & source ohmic resistance & ohm & 0 \\
\hline RSH & drain, source diffusion sheet resistance & ohm/square & 0 \\
\hline TT & bulk p-n transit time & sec & 0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline T_ABS \(\dagger\) & absolute temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_MEASURED \(\dagger\) & measured temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_REL_GLOBAL \(\dagger\) & relative to current temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_REL_LOCAL \(\dagger\) & relative to AKO model temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline w & channel width & meter & DEFW \\
\hline \multicolumn{4}{|c|}{Levels 1, 2, and 3} \\
\hline DELTA & width effect on threshold & & 0 \\
\hline ETA & static feedback (Level 3) & & 0 \\
\hline GAMMA & bulk threshold parameter & volt \({ }^{1 / 2}\) & see page 2-73 \\
\hline KP & transconductance coefficient & \(\mathrm{amp} / \mathrm{volt}^{2}\) & \(2.0 \mathrm{E}-5\) \\
\hline KAPPA & saturation field factor (Level 3) & & 0.2 \\
\hline LAMBDA & channel-length modulation (Levels 1 and 2) & volt \({ }^{-1}\) & 0.0 \\
\hline LD & lateral diffusion (length) & meter & 0.0 \\
\hline NEFF & channel charge coefficient (Level 2) & & 1.0 \\
\hline NFS & fast surface state density & \(1 / \mathrm{cm}^{2}\) & 0.0 \\
\hline NSS & surface state density & \(1 / \mathrm{cm}^{2}\) & none \\
\hline NSUB & substrate doping density & \(1 / \mathrm{cm}^{3}\) & none \\
\hline PHI & surface potential & volt & 0.6 \\
\hline THETA & mobility modulation (Level 3) & volt \({ }^{-1}\) & 0.0 \\
\hline tox & oxide thickness & meter & see page 2-73 \\
\hline TPG & Gate material type:
\[
\begin{aligned}
& +1=\text { opposite of substrate } \\
& -1=\text { same as substrate } \\
& 0=\text { aluminum }
\end{aligned}
\] & & +1 \\
\hline UCRIT & mobility degradation critical field (Level 2) & volt/cm & 1.0E4 \\
\hline UEXP & mobility degradation exponent (Level 2) & & 0.0 \\
\hline UTRA & (not used) mobility degradation transverse field coefficient & & 0.0 \\
\hline Uo & \begin{tabular}{l}
surface mobility \\
(The second character is the letter O , not the numeral zero.)
\end{tabular} & \(\mathrm{cm}^{2} / \mathrm{volt} \cdot \mathrm{sec}\) & 600 \\
\hline vmax & maximum drift velocity & meter/sec & 0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline vto & zero-bias threshold voltage & volt & 0 \\
\hline WD & lateral diffusion (width) & meter & 0 \\
\hline XJ & metallurgical junction depth (Levels 2 and 3) & meter & 0 \\
\hline XQC & fraction of channel charge attributed to drain & & 1.0 \\
\hline \multicolumn{4}{|c|}{Level \(4{ }^{* *}\)} \\
\hline DL & Channel shortening & m & \\
\hline DW & Channel narrowing & m & \\
\hline ETA & Zero-bias drain-induced barrier lowering coefficient & & \(\zeta\) \\
\hline K1 & Body effect coefficient & \(\operatorname{volt}^{1 / 2}\) & \(\zeta\) \\
\hline K2 & Drain/source depletion charge sharing coefficient & & \(\zeta\) \\
\hline MUS & Mobility at zero substrate bias and Vds=Vdd & \(\mathrm{cm}^{2} / \mathrm{volt}^{2} \cdot \mathrm{sec}\) & \(\zeta\) \\
\hline MUZ & Zero-bias mobility & \(\mathrm{cm}^{2} / \mathrm{volt} \cdot \mathrm{sec}\) & \\
\hline No & Zero-bias subthreshold slope coefficient & & \(\zeta\) \\
\hline NB & Sens. of subthreshold slope to substrate bias & & \(\zeta\) \\
\hline ND & Sens. of subthreshold slope to drain bias & & \(\zeta\) \\
\hline PHI & Surface inversion potential & volt & \(\zeta\) \\
\hline TEMP & Temperature at which parameters were measured & \({ }^{\circ} \mathrm{C}\) & \\
\hline tox & Gate-oxide thickness & m & \\
\hline บo & Zero-bias transverse-field mobility degradation & volt \({ }^{-1}\) & \(\zeta\) \\
\hline U1 & Zero-bias velocity saturation & \(\mu / \mathrm{volt}\) & \(\zeta\) \\
\hline VDD & Measurement bias range & volts & \\
\hline VFB & Flat-band voltage & volt & \(\zeta\) \\
\hline WDF & Drain, source junction default width & meter & \\
\hline X2E & Sens. of drain-induced barrier lowering effect to substrate bias & volt \({ }^{-1}\) & \(\zeta\) \\
\hline X2MS & Sens. of mobility to substrate bias @ Vds=0 & \(\mathrm{cm}^{2} / \mathrm{volt}{ }^{2} \cdot \mathrm{sec}\) & \(\zeta\) \\
\hline X2MZ & Sens. of mobility to substrate bias @ Vds=0 & \(\mathrm{cm}^{2} / \mathrm{volt}^{2} \cdot \mathrm{sec}\) & \(\zeta\) \\
\hline X2U0 & Sens. of transverse-field mobility degradation effect to substrate bias & volt \({ }^{2}\) & \(\zeta\) \\
\hline X2U1 & Sens. of velocity saturation effect to substrate bias & \(\mu /\) volt \(^{2}\) & \(\zeta\) \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{llll}
\hline Parameter \(^{*}\) & Description & Unit & Default \\
\hline X3E & \begin{tabular}{l} 
Sens. of drain-induced barrier lowering effect to \\
drain bias @ Vds \(=\) Vdd
\end{tabular} & volt \(^{-1}\) & \(\zeta\) \\
X3MS & Sens. of mobility to drain bias @ Vds=Vdd & \(\mathrm{cm}^{2} / \mathrm{volt}^{2} \cdot \mathrm{sec}\) & \(\zeta\) \\
X3U1 & Sens. of velocity saturation effect on drain & \(\mu / \mathrm{volt}^{2}\) & \(\zeta\) \\
XPART & \begin{tabular}{l} 
Gate-oxide capacitance charge model flag. \\
XPART=0 selects a 40/60 drain/source charge \\
partition in saturation, while XPART \(=1\) selects a \\
\(0 / 100\) drain/source charge partition.
\end{tabular} & & \\
& & & \\
& & &
\end{tabular}

\section*{Level 6}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{A0} & \multicolumn{2}{|l|}{bulk charge effect coefficient NMOS} & 1.0 \\
\hline & bulk charge effect coefficient PMOS & & 4.4 \\
\hline \multirow[t]{2}{*}{A1} & first non-saturation coefficient NMOS & 1/V & 0.0 \\
\hline & first non-saturation coefficient PMOS & 1/V & 0.23 \\
\hline \multirow[t]{2}{*}{A2} & second non-saturation coefficient NMOS & & 1.0 \\
\hline & second non-saturation coefficient PMOS & & 0.08 \\
\hline AT & saturation velocity temperature coefficient & \(\mathrm{m} / \mathrm{sec}\) & 3.3E4 \\
\hline \multirow[t]{3}{*}{BULKMOD} & bulk charge model selector: & & \\
\hline & NMOS & & 1 \\
\hline & PMOS & & 2 \\
\hline CDSC & drain/source and channel coupling capacitance & \(\mathrm{F} / \mathrm{m}^{2}\) & 2.4E-4 \\
\hline CDSCB & body bias sensitivity of CDSC & \(\mathrm{F} / \mathrm{Vm}^{2}\) & 0.0 \\
\hline DL & channel length reduction on one side & m & 0.0 \\
\hline DROUT & channel length dependent coefficient of the DIBL effect on Rout & & 0.56 \\
\hline DSUB & subthreshold DIBL coefficient exponent & & DROUT \\
\hline DVT0 & first coefficient of short-channel effect on threshold voltage & & 2.2 \\
\hline DVT1 & second coefficient of short-channel effect on threshold voltage & & 0.53 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline DVT2 & body bias coefficient of short-channel effect on threshold voltage & 1/V & -0.032 \\
\hline DW & channel width reduction on one side & m & 0.0 \\
\hline Etao & DIBL coefficient in subthreshold region & & 0.08 \\
\hline ETAB & body bias coefficient for the subthreshold DIBL coefficient & 1/V & -0.07 \\
\hline K1 & first-order body effect coefficient & \(\sqrt{\mathrm{V}}\) & see page \(\underline{\text { 2-74 }}\) \\
\hline K2 & second-order body effect coefficient & & see page 2-74 \\
\hline K3 & narrow width effect coefficient & & 80.0 \\
\hline К3в & body effect coefficient of K3 & 1/V & 0.0 \\
\hline KETA & body bias coefficient of the bulk charge effect. & 1/V & -0.047 \\
\hline KT1 & temperature coefficient for threshold voltage & V & -0.11 \\
\hline KT1L & channel length sensitivity of temperature coefficient for threshold voltage. & V-m & 0.0 \\
\hline KT2 & body bias coefficient of the threshold voltage temperature effect & & 0.022 \\
\hline NFACTOR & subthreshold swing coefficient & & 1.0 \\
\hline NGATE & poly gate doping concentration & \(1 / \mathrm{cm}^{3}\) & \\
\hline NLX & lateral nonuniform doping coefficient & m & 1.74E-7 \\
\hline NPEAK & peak doping concentration near interface & \(1 / \mathrm{cm}^{3}\) & 1.7 E 17 \\
\hline NSUB & substrate doping concentration & \(1 / \mathrm{cm}^{3}\) & 6.0 E 16 \\
\hline PCLM & channel length modulation coefficient & & 1.3 \\
\hline PDIBL1 & first output resistance DIBL effect coefficient & & 0.39 \\
\hline PDIBL2 & second output resistance DIBL effect coefficient & & 0.0086 \\
\hline PSCBE1 & first substrate current body effect coefficient & V/m & 4.24 E 8 \\
\hline PSCBE2 & second substrate current body effect coefficient & \(\mathrm{m} / \mathrm{V}\) & \(1.0 \mathrm{E}-5\) \\
\hline PVAG & gate dependence of Early voltage & & 0.0 \\
\hline RDS0 & contact resistance & ohms & 0.0 \\
\hline RDSW & parasitic resistance per unit width & \[
\begin{aligned}
& \text { ohms/ } \mu \\
& \mathrm{m}
\end{aligned}
\] & 0.0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline \multirow[t]{3}{*}{SATMOD} & saturation model selector: & & 2 \\
\hline & For semi-empirical output: resistance model 1 & & \\
\hline & For physical output: resistance model 2 & & \\
\hline \multirow[t]{5}{*}{SUBTHMOD} & subthreshold model selector: & & 2 \\
\hline & no subthreshold model 0 & & \\
\hline & BSIM1 subthreshold model 1 & & \\
\hline & BSIM3 subthreshold model 2 & & \\
\hline & BSIM3 subthreshold model & & \\
\hline TNOM & temperature at which parameters are extracted. & deg. C & 27 \\
\hline tox & gate oxide thickness & m & \(1.5 \mathrm{E}-8\) \\
\hline UA & first-order mobility degradation coefficient & \(\mathrm{m} / \mathrm{V}\) & \(2.25 \mathrm{E}-9\) \\
\hline UA1 & temperature coefficient for UA & \(\mathrm{m} / \mathrm{V}\) & \(4.31 \mathrm{E}-9\) \\
\hline UB & second-order mobility degradation coefficient & \((\mathrm{m} / \mathrm{V})^{2}\) & 5.87E-19 \\
\hline UB1 & temperature coefficient for UB & \((\mathrm{m} / \mathrm{V})^{2}\) & -7.61E-18 \\
\hline UC & body effect mobility degradation coefficient & 1/V & 0.0465 \\
\hline UC1 & temperature coefficient for UC & 1/V & -0.056 \\
\hline UTE & mobility temperature exponent & & -1.5 \\
\hline Voff & offset voltage in subthreshold region & V & -0.11 \\
\hline vSAT & saturation velocity at Temp \(=\) TNOM & \(\mathrm{cm} / \mathrm{sec}\) & 8.0 E 6 \\
\hline Vtho & threshold voltage at \(\mathrm{Vbs}=0\) for large channel length & V & see page 2-74 \\
\hline wo & narrow width effect parameter & m & 2.5E-6 \\
\hline XJ & junction depth & m & \(1.5 \mathrm{E}-7\) \\
\hline \multirow[t]{5}{*}{XPART} & charge partitioning coefficient: & & 0.0 \\
\hline & no charge model < 0.0 & & \\
\hline & 40/60 partition \(=0.0\) & & \\
\hline & 50/50 partition \(=0.5\) & & \\
\hline & \(0 / 100\) partition \(=1.0\) & & \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline \multicolumn{4}{|c|}{Level 6 Advanced} \\
\hline CIT & capacitance due to interface trapped charge & \(\mathrm{F} / \mathrm{m}^{2}\) & 0.0 \\
\hline EM & critical electrical field in channel & V/m & 4.1E7 \\
\hline ETA & drain voltage reduction coefficient due to LDD & & 0.3 \\
\hline GAMMA1 & body effect coefficient near the interface & \(\sqrt{\mathrm{V}}\) & see page 2-74 \\
\hline GAMMA2 & body effect coefficient in the bulk & \(\sqrt{\mathrm{V}}\) & see page \(\underline{\underline{2-74}}\) \\
\hline LDD & total length of the LDD region & m & 0.0 \\
\hline LITL & characteristic length related to current depth & m & see page \(\underline{\text { 2-74 }}\) \\
\hline PHI & surface potential under strong inversion & V & see page \(\underline{\text { 2-74 }}\) \\
\hline บ0 & \begin{tabular}{l}
mobility at Temp=TNOM: \\
NMOS \\
PMOS
\end{tabular} & \[
\begin{aligned}
& \mathrm{cm}^{2} / \mathrm{V}-\mathrm{sec} \\
& \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{sec}
\end{aligned}
\] & \[
\begin{aligned}
& 670.0 \\
& 250.0
\end{aligned}
\] \\
\hline VBM & maximum applied body bias & V & -5.0 \\
\hline VBX & vbs at which the depletion width equals XT & V & see page 2-74 \\
\hline VFB & flat-band voltage & V & see page \(\underline{\underline{2-74}}\) \\
\hline VGHIGH & voltage shift of the higher bound of the transition region & V & 0.12 \\
\hline vgLow & voltage shift of the lower bound of the transition region & V & -0.12 \\
\hline XT & doping depth & m & \(1.55 \mathrm{E}-7\) \\
\hline \multicolumn{4}{|c|}{Level 7: Control Parameters} \\
\hline CAPMOD & flag for the short-channel capacitance model & none & 1 \\
\hline MOBMOD & mobility model selector & none & 1 \\
\hline NOIMOD & flag for noise model & none & 1 \\
\hline NQSMOD & flag for NQS model & none & 0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline & Level 7: AC and Capacitance Param & ters & \\
\hline CF & fringing field capacitance & F/m & see page 2-75 \\
\hline CKAPPA & coefficient for lightly doped region overlap capacitance fringing field capacitance & F/m & 0.6 \\
\hline CLC & constant term for the short-channel model & m & \(1.0 \mathrm{E}-6\) \\
\hline CLE & exponential term for the short-channel model & none & 0.6 \\
\hline cgbo & gate bulk overlap capacitance per unit channel length & F/m & 0.0 \\
\hline CGD1 & light-doped drain-gate region overlap capacitance & F/m & 0.0 \\
\hline CGDO & non-LDD region drain-gate overlap capacitance per channel length & F/m & see page \(\underline{\underline{\mathbf{2 - 7 5}}}\) \\
\hline CGS1 & light-doped source-gate region overlap capacitance & F/m & 0.0 \\
\hline CGSO & non-LDD region source-gate overlap capacitance per channel length & F/m & see page \(\underline{\underline{2-75}}\) \\
\hline CJ & bottom junction per unit area & \(\mathrm{F} / \mathrm{m}^{2}\) & 5.0E-4 \\
\hline CJSW & source/drain side junction capacitance per unit area & \(\mathrm{F} / \mathrm{m}^{2}\) & \(5.0 \mathrm{E}-10\) \\
\hline DLC & length offset fitting parameter from C-V & m & LINT \\
\hline DWC & width offset fitting parameter from C-V & m & WINT \\
\hline MJ & bottom junction capacitance grading coefficient & none & 0.5 \\
\hline MJSW & source/drain side junction capacitance grading coefficient & none & 0.33 \\
\hline PB & bottom built-in potential & V & 1.0 \\
\hline PBSW & source/drain side junction built-in potential & V & 1.0 \\
\hline XPART & charge partitioning rate flag & none & 0.0 \\
\hline \multicolumn{4}{|c|}{Level 7: Bin Description Parameters} \\
\hline BINUNIT & bin unit scale selector & none & 1.0 \\
\hline LMAX & maximum channel length & m & 1.0 \\
\hline LMIN & minimum channel length & m & 0.0 \\
\hline wmax & maximum channel width & m & 1.0 \\
\hline WMIN & minimum channel width & m & 0.0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline & Level 7: DC Parameters & & \\
\hline A0 & bulk charge effect coefficient for channel length & none & 1.0 \\
\hline A1 & first non-saturation effect parameter & 1/V & 0.0 \\
\hline A2 & second non-saturation factor & none & 1.0 \\
\hline AGS & gate-bias coefficient of Abulk & 1/V & 0.0 \\
\hline ALPHAO & first parameter of impact-ionization current & \(\mathrm{m} / \mathrm{V}\) & 0.0 \\
\hline B0 & bulk charge effect coefficient for channel width & m & 0.0 \\
\hline B1 & bulk charge effect width offset & m & 0.0 \\
\hline betao & second parameter of impact-ionization current & V & 30.0 \\
\hline CDSC & drain/source to channel coupling capacitance & \(\mathrm{F} / \mathrm{m}^{2}\) & 2.4E-4 \\
\hline CDSCB & body-bias sensitivity of CDSC & \(\mathrm{F} / \mathrm{Vm}^{2}\) & 0.0 \\
\hline CDSCD & drain-bias sensitivity of CDSC & \(\mathrm{F} / \mathrm{Vm}{ }^{2}\) & 0.0 \\
\hline CIT & interface trap capacitance & \(\mathrm{F} / \mathrm{m}^{2}\) & 0.0 \\
\hline DELTA & effective Vds parameter & V & 0.01 \\
\hline DROUT & L-dependence coefficient of the DIBL correction parameter in Rout & none & 0.56 \\
\hline DSUB & dibl coefficient exponent in subthreshold region & none & DROUT \\
\hline DVT0 & first coefficient of short-channel effect on threshold voltage & none & 2.2 \\
\hline DVTow & first coefficient of narrow-width effect on threshold voltage for small-channel length & \(1 / \mathrm{m}\) & 0.0 \\
\hline DVT1 & second coefficient of short-channel effect on threshold voltage & none & 0.53 \\
\hline DVT2 & body-bias coefficient of short-channel effect on threshold voltage & 1/V & -0.032 \\
\hline DVTW1 & second coefficient of narrow-width effect on threshold voltage for small channel length & 1/m & 5.3E6 \\
\hline DVTW2 & body-bias coefficient of narrow-width effect for small channel length & 1/V & -0.032 \\
\hline DWB & coefficient of substrate body bias dependence of Weff & \(\mathrm{m} / \mathrm{V}^{1 / 2}\) & 0.0 \\
\hline DWG & coefficient of gate dependence of Weff & \(\mathrm{m} / \mathrm{V}\) & 0.0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline ETAO & DIBL coefficient in subthreshold region & none & 0.08 \\
\hline ETAB & body-bias coefficient for the subthreshold DIBL effect & 1/V & -0.07 \\
\hline JS & source-drain junction saturation current per unit area & \(\mathrm{A} / \mathrm{m}^{2}\) & \(1.0 \mathrm{E}-4\) \\
\hline K1 & first-order body effect coefficient & \(\mathrm{V}^{1 / 2}\) & \[
\begin{aligned}
& 0.5 \\
& \text { see page } \underline{\mathbf{2 - 7 5}}
\end{aligned}
\] \\
\hline K2 & second-order body effect coefficient & none & \[
\begin{aligned}
& 0.0 \\
& \text { see page } \underline{\mathbf{2 - 7 5}}
\end{aligned}
\] \\
\hline K3 & narrow width coefficient & none & 80.0 \\
\hline K3B & body effect coefficient of K \(\mathbf{3}\) & 1/V & 0.0 \\
\hline KETA & body-bias coefficient of bulk charge effect & 1/V & -0.047 \\
\hline LINT & length offset fitting parameter from I-V without bias & m & 0.0 \\
\hline NFACTOR & subthreshold swing factor & none & 1.0 \\
\hline NGATE & poly gate doping concentration & \(\mathrm{cm}^{-3}\) & infinite \\
\hline NLX & lateral non-uniform doping parameter & m & \(1.74 \mathrm{E}-7\) \\
\hline PCLM & channel length modulation parameter & none & 1.3 \\
\hline PDIBLC1 & first output resistance DIBL effect correction parameter & none & 0.39 \\
\hline PDIBLC2 & second output resistance DIBL effect correction parameter & none & 0.0086 \\
\hline PDIBLCB & body effect coefficient of DIBL correction parameter & 1/V & 0.0 \\
\hline PRWB & body-effect coefficient of RDSW & \(1 / \mathrm{V}^{1 / 2}\) & 0.0 \\
\hline PRWG & gate bias effect coefficient of RDSW & 1/V & 0.0 \\
\hline PSCBE1 & first substrate current body-effect parameter & V/m & 4.24 E 8 \\
\hline PSCBE2 & second substrate current body-effect parameter & V/m & \(1.0 \mathrm{E}-5\) \\
\hline PVAG & gate dependence of Early voltage & none & 0.0 \\
\hline RDSW & parasitic resistance per unit width & \(\Omega-\mu \mathrm{m}{ }^{\text {WR }}\) & 0.0 \\
\hline RSH & source-drain sheet resistance & \(\Omega /\) square & 0.0 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline \multirow[t]{3}{*}{U0} & mobility at Temp=TNOM & & \\
\hline & NMOS & 670.0 & \(\mathrm{cm}^{2} /(\mathrm{V} \cdot \mathrm{sec})\) \\
\hline & PMOS & 250.0 & \\
\hline UA & first-order mobility degradation coefficient & \(\mathrm{m} / \mathrm{V}\) & 2.25E-9 \\
\hline UB & second-order mobility degradation coefficient & \((\mathrm{m} / \mathrm{V})^{2}\) & 5.87E-19 \\
\hline \multirow[t]{2}{*}{Uc} & body-effect of mobility degradation coefficient & \(\mathrm{m} / \mathrm{V}^{2}\) & -4.65E-11 when MOBMOD=1 or 2 \\
\hline & & 1/V & -0.046 when MOBMOD=3 \\
\hline VBM & maximum applied body bias in threshold voltage calculation & V & -5.0 \\
\hline VOFF & offset voltage in the subthreshold region at large W and L & V & -0.08 \\
\hline vSAT & saturation velocity at Temp \(=\) TNOM & \(\mathrm{m} / \mathrm{sec}\) & 8.0E 4 \\
\hline VTH0 & threshold voltage@Vbs=0 for large L & V & 0.7 (NMOS) -0.7 (PMOS) see page \(\underline{\mathbf{2 - 7 5}}\) \\
\hline wo & narrow-width parameter & m & \(2.5 \mathrm{E}-6\) \\
\hline WINT & width-offset fitting parameter from I-V without bias & m & 0.0 \\
\hline WR & width offset from Weff for Rds calculation & none & 1.0 \\
\hline \multicolumn{4}{|c|}{Level 7: Flicker Noise Parameters} \\
\hline AF & frequency exponent & none & 1.0 \\
\hline EF & flicker exponent for NOIMOD=2 & none & 1.0 \\
\hline EM & saturation field & V/m & 4.1E7 \\
\hline KF & flicker noise parameter for NOIMOD=1 & none & 0.0 \\
\hline NOIA & noise parameter A & none & 1.0E20 (NMOS) 9.9E18 (PMOS) \\
\hline NOIB & noise parameter B & none & \begin{tabular}{l}
5.0E4 (NMOS) \\
2.4E3 (PMOS)
\end{tabular} \\
\hline NOIC & noise parameter C & none & \[
\begin{aligned}
& -1.4 \mathrm{E}-12 \\
& \text { (NMOS) } \\
& \text { 1.4E-12 (PMOS) }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline \multicolumn{4}{|c|}{Level 7: NQS Parameter} \\
\hline ELM & Elmore constant of the channel & none & 5.0 \\
\hline \multicolumn{4}{|c|}{Level 7: Process Parameters} \\
\hline GAMMA1 & body-effect coefficient near the surface & \(\mathrm{V}^{1 / 2}\) & see page 2-75 \\
\hline GAMMA2 & body-effect coefficient in the bulk & \(\mathrm{V}^{1 / 2}\) & see page 2-75 \\
\hline NCH & channel doping concentration & \(1 / \mathrm{cm}^{3}\) & 1.7 E 17 \\
\hline NSUB & substrate doping concentration & \(1 / \mathrm{cm}^{3}\) & 6.0 E 16 \\
\hline TOX & gate-oxide thickness & m & \(1.5 \mathrm{E}-8\) \\
\hline VBX & Vbs at which the depletion region \(=\mathbf{X T}\) & V & see page \(\underline{\underline{2-75}}\) \\
\hline XJ & junction depth & m & \(1.5 \mathrm{E}-7\) \\
\hline XT & doping depth & m & \(1.55 \mathrm{E}-7\) \\
\hline \multicolumn{4}{|c|}{Level 7: Temperature Parameters} \\
\hline AT & temperature coefficient for saturation velocity & \(\mathrm{m} / \mathrm{sec}\) & 3.3E4 \\
\hline KT1 & temperature coefficient for threshold voltage & V & -0.11 \\
\hline KT1L & channel length dependence of the temperature coefficient for threshold voltage & V*m & 0.0 \\
\hline KT2 & body-bias coefficient of threshold voltage temperature effect & none & 0.022 \\
\hline PRT & temperature coefficient for RDSW & \(\Omega-\mu \mathrm{m}\) & 0.0 \\
\hline TNOM & temperature at which parameters are extracted & \({ }^{\circ} \mathrm{C}\) & 27.0 \\
\hline UA1 & temperature coefficient for UA & m/V & \(4.31 \mathrm{E}-9\) \\
\hline UB1 & temperature coefficient for UB & \((\mathrm{m} / \mathrm{V})^{2}\) & -7.61E-18 \\
\hline UC1 & temperature coefficient for UC & \(\mathrm{m} / \mathrm{V}^{2}\) & -5.6E -11 when MOBMOD=1 or 2 \\
\hline & & 1/V & - 0.056 when MOBMOD=3 \\
\hline UTE & mobility temperature exponent & none & -1.5 \\
\hline
\end{tabular}

\section*{MOSFET Model Parameters (continued)}
\begin{tabular}{|c|c|c|c|}
\hline Parameter* & Description & Unit & Default \\
\hline & Level 7: W and L Parameters & & \\
\hline LL & coefficient of length dependence for length offset & \(m^{\text {LLN }}\) & 0.0 \\
\hline LLN & power of length dependence for length offset & none & 1.0 \\
\hline LW & coefficient of width dependence for length offset & \[
\mathrm{m}^{\mathrm{LWN}}
\] & 0.0 \\
\hline LWL & coefficient of length and width cross term for length offset & \(\mathrm{m}^{\text {LWN+LLN }}\) & 0.0 \\
\hline LWN & power of width dependence for length offset & none & 1.0 \\
\hline WL & coefficient of length dependence for width offset & \(\mathrm{m}^{\text {WLN }}\) & 0.0 \\
\hline WLN & power of length dependence of width offset & none & 1.0 \\
\hline WW & coefficient of width dependence for width offset & \(\mathrm{m}^{\text {WWN }}\) & 0.0 \\
\hline WWL & coefficient of length and width cross term for width offset & \(\mathrm{m}^{\text {WWN+WLN }}\) & 0.0 \\
\hline WWN & power of width dependence of width offset & none & 1.0 \\
\hline
\end{tabular}

\footnotetext{
* See ,MODEL (Model).
**A \(\zeta\) in the Default column indicates that the parameter may have corresponding parameters exhibiting length and width dependence. See ModelLevel 4.
\(\dagger\) For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see ,MODEL_(Model).
}

\section*{MOSFET Equations}

These equations describe an N-channel MOSFET. For P-channel devices, reverse the signs of all voltages and currents.
In the following equations:
\begin{tabular}{ll}
Vbs & \(=\) intrinsic substrate-intrinsic source voltage \\
Vbd & \(=\) intrinsic substrate-intrinsic drain voltage \\
Vds & \(=\) intrinsic drain-intrinsic source voltage \\
Vdsat & \(=\) saturation voltage \\
Vgs & \(=\) intrinsic gate-intrinsic source voltage \\
Vgd & \(=\) intrinsic gate-intrinsic drain voltage \\
Vt & \(=k \cdot \mathrm{~T} / q\) (thermal voltage) \\
Vth & \(=\) threshold voltage \\
\(\mathrm{C}_{\mathrm{ox}}\) & \(=\) the gate oxide capacitance per unit area. \\
f & \(=\) noise frequency \\
\(k\) & \(=\) Boltzmann's constant \\
\(q\) & \(=\) electron charge \\
Leff & \(=\) effective channel length \\
Weff & \(=\) effective channel width \\
T & \(=\) analysis temperature \(\left({ }^{\circ} \mathrm{K}\right)\) \\
Tnom & \(=\) nominal temperature (set using TNOM option)
\end{tabular}

Other variables are from MOSFET Model Parameters.

Positive current is current flowing into a terminal (for example, positive drain current flows from the drain through the channel to the source).

\section*{MOSFET Equations for DC Current}

\section*{All Levels}
\(\mathrm{Ig}=\) gate current \(=0\)
\(\mathrm{Ib}=\) bulk current \(=\mathrm{Ibs}+\mathrm{Ibd}\)
where
\(\mathrm{Ibs}=\) bulk-source leakage current \(=\mathrm{Iss} \cdot\left(e^{\mathrm{Vbs}\left(\mathrm{N}_{(\mathrm{VI})}-1\right)}\right.\)
\(\mathrm{Ibd}=\) bulk-drain leakage current \(=\mathrm{Ids} \cdot\left(e^{\mathrm{Vbd}\left(\mathrm{N} \cdot \mathrm{VIV}_{\mathrm{V}}\right)}-1\right)\)
where
if
\[
\mathrm{JS}=0, \text { or } \mathrm{AS}=0, \text { or } \mathrm{AD}=0
\]
then
Iss = IS
Ids = IS
else
\[
\begin{aligned}
& \text { Iss }=\text { AS } \cdot \mathbf{J S}+\text { PS• } \cdot \mathbf{J S S W} \\
& \text { Ids }=\text { AD } \cdot \mathbf{J S}+\text { PD } \cdot \mathbf{J S S W}
\end{aligned}
\]
\(\mathrm{Id}=\) drain current \(=\mathrm{Idrain}-\mathrm{Ibd}\)
Is \(=\) source current \(=-\) Idrain -Ibs

\section*{Level 1: Idrain}

\section*{Normal Mode: Vds > 0}

\section*{Case 1}
for cutoff region: \(\mathrm{Vgs}-\mathrm{V}_{\text {to }}<0\)
then: Idrain \(=0\)

\section*{Case 2}
for linear region: \(\mathrm{Vds}<\mathrm{Vgs}-\mathrm{V}_{\text {to }}\)
then: Idrain \(=(\mathrm{W} / \mathrm{L}) \cdot(\mathbf{K P} / 2) \cdot(1+\mathrm{LAMBDA} \cdot \mathrm{Vds}) \cdot \mathrm{Vds} \cdot\left(2 \cdot\left(\mathrm{Vgs}-\mathrm{V}_{\mathrm{to}}\right)-\mathrm{Vds}\right)\)

\section*{Case 3}
for saturation region: \(0 \leq \mathrm{Vgs}-\mathrm{V}_{\text {to }} \leq \mathrm{Vds}\)
then: Idrain \(=(\mathrm{W} / \mathrm{L}) \cdot(\mathrm{KP} / 2) \cdot(1+\mathrm{LAMBDA} \cdot \mathrm{Vds}) \cdot\left(\mathrm{Vgs}-\mathrm{V}_{\mathrm{to}}\right)^{2}\)
where
\(\mathrm{V}_{\mathrm{to}}=\) VTO + GAMMA \(\cdot\left((\text { PHI- } \mathrm{Vbs})^{1 / 2}-\mathrm{PHI}^{1 / 2)}\right.\)

\section*{Inverted Mode: Vds < 0}

Switch the source and drain in the equations above.

\section*{Levels 2 and 3: Idrain}

See reference [2] of References for detailed information.

\section*{MOSFET Equations for Capacitance}

82
All capacitances are between terminals of the intrinsic MOSFET, that is, to the inside of the ohmic drain and source resistances. For Levels 1, 2, and 3, the capacitance model has been changed to conserve charge.

Levels 1, 2, and 3
Cbs \(=\) bulk-source capacitance \(=\) area cap.+ sidewall cap.+ transit time cap.
Cbd \(=\) bulk-drain capacitance \(=\) area cap.+ sidewall cap.+ transit time cap.
where
if
\(\mathbf{C B S}=0 \quad A N D \mathbf{C B D}=0\)
then
Cbs \(=\) AS.CJ.Cbsj + PS.CJSW.Cbss \(+\mathrm{TT} \cdot \mathrm{Gbs}\)
Cbd \(=\) AD \(\cdot \mathbf{C J} \cdot C b d j+\) PD.CJSW.Cbds + TT•Gds
else
Cbs = CBS•Cbsj + PS•CJSW•Cbss + TT•Gbs
Cbd \(=\) CBD•Cbdj + PD•CJSW•Cbds + TT•Gds
where
\(\mathrm{Gbs}=\mathrm{DC}\) bulk-source conductance \(=d \mathrm{lbs} / d \mathrm{Vbs}\)
\(\mathrm{Gbd}=\mathrm{DC}\) bulk-drain conductance \(=d \mathrm{Ibd} / d \mathrm{Vbd}\)
if
\(\mathrm{Vbs} \leq \mathrm{FC} \cdot \mathrm{PB}\)
then
\(\mathrm{Cbsj}=(1-\mathrm{Vbs} / \mathrm{PB})^{-\mathrm{MJ}}\)
Cbss \(=(1-\mathrm{Vbs} /\) PBSW \()-\) MJSW
if
\(\mathrm{Vbs}>\mathrm{FC} \cdot \mathrm{PB}\)
then
\(\mathrm{Cbsj}=(1-\mathrm{FC})^{-(1+\mathrm{MJ})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJ})+\mathrm{MJ} \cdot \mathrm{Vbs} / \mathrm{PB})\)
Cbss \(=(1-\mathrm{FC}) \cdot(1+\mathrm{MJSW}) \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJSW})+\mathrm{MJSW} \cdot \mathrm{Vbs} /\) PBSW \()\)
if
Vbd \(\leq\) FC•PB
then
\(\operatorname{Cbdj}=(1-\mathrm{Vbd} / \mathrm{PB})^{-\mathrm{MJ}}\)
Cbds \(=(1-\mathrm{Vbd} / \text { PBSW })^{-\mathrm{MJSW}}\)
if
Vbd > FC•PB
then
Cbdj \(=(1-\mathbf{F C})^{-(1+\mathbf{M J})} \cdot(1-\mathbf{F C} \cdot(1+\mathbf{M J})+\mathbf{M J} \cdot \mathrm{Vbd} / \mathbf{P B})\)
Cbds \(=(1-\mathrm{FC})^{(1+\mathrm{MJSW})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJSW}))\)

Cgs \(=\) gate-source overlap capacitance \(=\) CGSO \(\cdot \mathrm{W}\)
Cgd \(=\) gate-drain overlap capacitance \(=\) CGDO \(\cdot \mathbf{W}\)
\(\mathrm{Cgb}=\) gate-bulk overlap capacitance \(=\mathbf{C G B O} \cdot \mathrm{L}\)

\section*{Levels 4 and 6}

See references [6] and [7] of References.

\section*{MOSFET Equations for Temperature Effects}

The ohmic (parasitic) resistances have no temperature dependence.

\section*{All Levels}
```

IS(T) = IS }\cdot\mp@subsup{e}{}{(Eg(T,Tom)TTTnom - Eg(T)NT
JS(T) = JS }\cdot\mp@subsup{e}{}{(Eg/T\mathrm{ (Tom) TTMom-Eg(T)/V}
JSSW(T) = JSSW }\cdot\mp@subsup{e}{}{(Egg(Tnom)TTTnom-Eg(T)NV
PB}(\textrm{T})=\textrm{PB}\cdot\textrm{T}/\mathrm{ Tnom - 3.Vt }\operatorname{ln}(\textrm{T}/\mathrm{ Tnom) - Eg(Tnom)}\cdot\textrm{T}/\mathrm{ Tnom }+\textrm{Eg}(\textrm{T}
PBSW(T) = PBSW·T/Tnom - 3.Vt·ln(T/Tnom) - Eg(Tnom).T/Tnom + Eg(T)
PHI(T) = PHI·T/Tnom - 3.Vt\cdotln(T/Tnom) - Eg(Tnom).T/Tnom + Eg(T)
where
Eg(T)= silicon bandgap energy = 1.16-.000702\cdotT2/(T+1108)
CBD(T) = CBD.(1+MJ.(.0004.(T-Tnom)+(1-PB(T)/PB)))
CBS(T) = CBS.(1+MJ.(.0004.(T-Tnom)+(1-PB(T)/PB)))
CJ}(\textrm{T})=\mathbf{CJ}\cdot(1+M\mathbf{MJ}\cdot(.0004\cdot(T-Tnom)+(1-PB(T)/PB)))
CJSW(T) = CJSW·(1+MJSW (.0004.(T-Tnom)+(1-PB(T)/PB)))
KP(T) = KP.(T/Tnom)}\mp@subsup{)}{}{-3/2
UO(T) = UO.(T/Tnom)}\mp@subsup{)}{}{-3/2
MUS(T) = MUS.(T/Tnom)}\mp@subsup{)}{}{-3/2
MUZ() = MUZ·(T/Tnom)}\mp@subsup{)}{}{-3/2
X3MS(T) = X3MS.(T/Tnom)}\mp@subsup{)}{}{-3/2

```

\section*{MOSFET Equations for Noise}

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power densities (per unit bandwidth).
The model parameter NLEV is used to select the form of shot and flicker noise, and GDSNOI is the channel shot noise coefficient model parameter. When NLEV<3, the original SPICE2 shot noise equation is used in both the linear and saturation regions, but the use of this equation may produce inaccurate results in the linear region. When \(\operatorname{NLEV}=3\), a different equation is used that is valid in both linear and saturation regions.

The model parameters \(\mathbf{A F}\) and \(\mathbf{K F}\) are used in the small-signal AC noise analysis to determine the equivalent MOSFET flicker noise.

For more information, see reference [5] of References.

\section*{MOSFET Channel Shot and Flicker Noise}

Ichan \(^{2}=\) Ishot \(^{2}+\) Iflick \(^{2}\)

\section*{Intrinsic MOSFET Flicker Noise}

for NLEV < 3
Ishot \(^{2}=\frac{8 \cdot k \cdot \mathrm{~T} \cdot \mathrm{gm}}{3}\)
for \(\operatorname{NLEV}=3\)
\(\mathrm{Ishot}^{2} \equiv \frac{8 \cdot \mathrm{k} \cdot \mathrm{T}}{3} \times \beta \times(\mathrm{Vgs}-\mathrm{Vth}) \frac{1+a+a^{2}}{1+\mathrm{a}} \times\) GDSNOI
where
for linear region:
\[
a=1-(\mathrm{Vds} / \mathrm{Vdsat})
\]
for saturation region:
\[
a=0
\]

\section*{Parasitic Resistance Thermal Noise}
\begin{tabular}{ll} 
RD & \(\mathrm{Id}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{RD}\) \\
RG & \(\mathrm{Ig}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{RG}\) \\
RS & \(\mathrm{Is}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{RS}\) \\
RB & \(\mathrm{Ib}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{RB}\)
\end{tabular}

\section*{References}

For a more complete description of the MOSFET models, refer to:
[1] H. Shichman and D. A. Hodges, "Modeling and simulation of insulated-gate field-effect transistor switching circuits," IEEE Journal of Solid-State Circuits, SC-3, 285, September 1968.
[2] A. Vladimirescu, and S. Lui, "The Simulation of MOS Integrated Circuits Using SPICE2," Memorandum No. M80/7, February 1980.
[3] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, "BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors," IEEE Journal of Solid-State Circuits, SC-22, 558-566, August 1987.
[4] J. R. Pierret, "A MOS Parameter Extraction Program for the BSIM Model," Memorandum No. M84/99 and M84/100, November 1984.]
[5] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, McGraw-Hill, 1993.
[6] Ping Yang, Berton Epler, and Pallab K. Chatterjee, "An Investigation of the Charge Conservation Problem for MOSFET Circuit Simulation," IEEE Journal of Solid-State Circuits, Vol. SC-18, No.1, February 1983.
[7] J.H. Huang, Z.H. Liu, M.C. Jeng, K. Hui, M. Chan, P.K. KO, and C. Hu, "BSIM3 Manual," Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720.
[8] Department of Electrical Engineering and Computer Science, "BSIM3v3 Manual (Final version)," University of California, Berkeley CA 94720.
[9] J. C. Bowers, and H. A. Neinhaus, SPICE2 Computer Models for HEXFETs, Application Note 954A, reprinted in HEXFET Power MOSFET Databook, International Rectifier Corporation \#HDB-3.

For more information on References [2] and [4], contact:
Software Distribution Office
EECS/ERL Industrial Liaison Program
205 Cory Hall \#1770
University of California
Berkeley, CA 94720-1770
(510) 643-6687

\section*{Bipolar Transistor}

Examples \(\quad 0114213\) PNPNOM
Q13 15301 NPNSTRONG 1.5
Q7 VC 512 [SUB] LATPNP
Model Form
.MODEL <model name> NPN [model parameters]
.MODEL <model name> PNP [model parameters]
.MODEL <model name> LPNP [model parameters]

\section*{Arguments and Options}
[substrate node]
is optional, and if not specified, the default is the ground.
Because the simulator allows alphanumeric names for nodes, and because there is no easy way to distinguish these from the model names, the name (not a number) used for the substrate node needs to be enclosed with square brackets [ ]. Otherwise, nodes would be interpreted as model names. See the third example.
[area value] is the relative device area and has a default value of 1 .

Description The bipolar transistor is modeled as an intrinsic transistor using ohmic resistances in series with the collector (RC/area), with the base (value varies with current, see Bipolar Transistor Equations), and with the emitter (RE/area).


Positive current is current flowing into a terminal.

\section*{-Chapter}

For model parameters with alternate names, such as VAF and VA (the alternate name is shown by using parentheses), either name can be used.
For model types NPN and PNP, the isolation junction capacitance is connected between the intrinsic-collector and substrate nodes. This is the same as in SPICE2, or SPICE3, and works well for vertical IC transistor structures. For lateral IC transistor structures there is a third model, LPNP, where the isolation junction capacitance is connected between the intrinsic-base and substrate nodes.

\section*{Schematics Symbols}

The following table lists the set of bipolar transistor breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.
\begin{tabular}{llll}
\hline Symbol Name & Model Type & Attribute & Attribute Description \\
\hline QBREAKL & LPNP & AREA & area scaling factor \\
& & MODEL & LNP model name \\
QBREAKN & NPN & AREA & area scaling factor \\
\begin{tabular}{l} 
QBREAKN3
\end{tabular} & & MODEL & NPN model name \\
QBREAKN4 & & & \\
\begin{tabular}{l} 
QBREAKP
\end{tabular} & PNP & AREA & area scaling factor \\
\begin{tabular}{l} 
QBREAKP3 \\
QBREAKP4
\end{tabular} & & MODEL & PNP model name \\
\hline
\end{tabular}

\section*{Setting operating temperature}

Operating temperature can be set to be different from the global circuit temperature by defining one of the model parameters: T_ABS, T_REL_GLOBAL, or T_REL_LOCAL. Additionally, model parameters can be assigned unique measurement temperatures using the T_MEASURED model parameter. See Bipolar Transistor Model Parameters for more information.

\section*{Bipolar Transistor Model Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters* & Description & Units & Default \\
\hline AF & flicker noise exponent & & 1.0 \\
\hline BF & ideal maximum forward beta & & 100.0 \\
\hline BR & ideal maximum reverse beta & & 1.0 \\
\hline CJC & base-collector zero-bias p-n capacitance & farad & 0.0 \\
\hline CJE & base-emitter zero-bias p-n capacitance & farad & 0.0 \\
\hline CJS (CCS) & substrate zero-bias p-n capacitance & farad & 0.0 \\
\hline EG & bandgap voltage (barrier height) & eV & 1.11 \\
\hline FC & forward-bias depletion capacitor coefficient & & 0.5 \\
\hline GAMMA & epitaxial region doping factor & & 1E-11 \\
\hline IKF (IK) & corner for forward-beta high-current roll-off & amp & infinite \\
\hline IKR & corner for reverse-beta high-current roll-off & amp & infinite \\
\hline IRB & current at which Rb falls halfway to & amp & infinite \\
\hline IS & transport saturation current & amp & 1E-16 \\
\hline ISC (C4) \(\dagger\) & base-collector leakage saturation current & amp & 0.0 \\
\hline ISE (C2) \(\dagger\) & base-emitter leakage saturation current & amp & 0.0 \\
\hline ISS & substrate p-n saturation current & amp & 0.0 \\
\hline ITF & transit time dependency on Ic & amp & 0.0 \\
\hline KF & flicker noise coefficient & & 0.0 \\
\hline MJC (MC) & base-collector p-n grading factor & & 0.33 \\
\hline MJE (ME) & base-emitter p-n grading factor & & 0.33 \\
\hline MJS (MS) & substrate p-n grading factor & & 0.0 \\
\hline NC & base-collector leakage emission coefficient & & 2.0 \\
\hline NE & base-emitter leakage emission coefficient & & 1.5 \\
\hline NF & forward current emission coefficient & & 1.0 \\
\hline NK & high-current roll-off coefficient & & 0.5 \\
\hline NR & reverse current emission coefficient & & 1.0 \\
\hline NS & substrate p-n emission coefficient & & 1.0 \\
\hline PTF & excess phase @ \(1 /(2 \pi \cdot \mathrm{TF}) \mathrm{Hz}\) & degree & 0.0 \\
\hline QCO & epitaxial region charge factor & coulomb & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters* & Description & Units & Default \\
\hline RB & zero-bias (maximum) base resistance & ohm & 0.0 \\
\hline RBM & minimum base resistance & ohm & RB \\
\hline RC & collector ohmic resistance & ohm & 0.0 \\
\hline RCO \# & epitaxial region resistance & ohm & 0.0 \\
\hline RE & emitter ohmic resistance & ohm & 0.0 \\
\hline TF & ideal forward transit time & sec & 0.0 \\
\hline TR & ideal reverse transit time & sec & 0.0 \\
\hline TRB1 & RB temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}^{-1}\) & 0.0 \\
\hline TRB2 & RB temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}^{-2}\) & 0.0 \\
\hline TRC1 & RC temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}^{-1}\) & 0.0 \\
\hline TRC2 & RC temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}^{-2}\) & 0.0 \\
\hline TRE1 & RE temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}^{-1}\) & 0.0 \\
\hline TRE2 & RE temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}^{-2}\) & 0.0 \\
\hline TRM1 & RBM temperature coefficient (linear) & \({ }^{\circ} \mathrm{C}^{-1}\) & 0.0 \\
\hline TRM2 & RBM temperature coefficient (quadratic) & \({ }^{\circ} \mathrm{C}^{-2}\) & 0.0 \\
\hline T_ABS & absolute temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_MEASURED & measured temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_REL_GLOBAL & relative to current temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_REL_LOCAL & relative to AKO model temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline VAF (VA) & forward Early voltage & volt & infinite \\
\hline VAR (VB) & reverse Early voltage & volt & infinite \\
\hline VJC (PC) & base-collector built-in potential & volt & 0.75 \\
\hline VJE (PE) & base-emitter built-in potential & volt & 0.75 \\
\hline VJS (PS) & substrate p-n built-in potential & volt & 0.75 \\
\hline vo & carrier mobility knee voltage & volt & 10.0 \\
\hline VTF & transit time dependency on Vbc & volt & infinite \\
\hline XcJc & fraction of CJC connected internally to Rb & & 1.0 \\
\hline XCJC2 & fraction of CJC connected internally to Rb & & 1.0 \\
\hline хтв & forward and reverse beta temperature coefficient & & 0.0 \\
\hline XTF & transit time bias dependence coefficient & & 0.0 \\
\hline XTI (PT) & IS temperature effect exponent & & 3.0 \\
\hline
\end{tabular}
* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see ,MODEL (Model).
\(\dagger\) The parameters ISE (C2) and ISC (C4) can be set to be greater than one. In this case, they are interpreted as multipliers of IS instead of absolute currents: that is, if ISE is greater than one, then it is replaced by ISE.IS. Likewise for ISC.
\(\ddagger\) If the model parameter \(\mathbf{R C O}\) is specified, then quasi-saturation effects are included.

\section*{Distribution of the CJC capacitance}

The distribution of the CJC capacitance is specified by XCJC and XCJC2. The model parameter XCJC2 is used like XCJC. The differences between the two parameters are as follows.
\begin{tabular}{lll}
\hline Branch & XCJC & XCJC2 \\
\hline intrinsic base to intrinsic collector & XCJC \(^{*}\) CJC & XCJC2*CJC \\
extrinsic base to intrinsic collector & \((1.0-\text { XCJC })^{*}\) CJC & not applicable \\
extrinsic base to extrinsic collector & not applicable & \(\left(1.0-\right.\) XCJC2) \({ }^{*}\) CJC \\
\hline
\end{tabular}

When XCJC2 is specified in the range \(0<\mathbf{X C J C 2}<1.0, \mathbf{X C J C}\) is ignored. Also, the extrinsic base to extrinsic collector capacitance ( Cbx 2 ) and the gain-bandwidth product ( Ft 2 ) are included in the operating point information (in the output listing generated during a Bias Point Detail analysis, \(\mathbf{O P}\) (Bias Point)). For backward compatibility, the parameter XCJC and the associated calculation of Cbx and Ft remain unchanged. Cbx and Ft appears in the output listing only when XCJC is specified.
The use of XCJC2 produces more accurate results because Cbx2 (the fraction of CJC associated with the intrinsic collector node) now equals the ratio of the device's emitter area-to-base area. This results in a better correlation between the measured data and the gain bandwidth product (Ft2) calculated by PSpice.

\section*{Bipolar Transistor Equations}

The equations in this section describe an NPN transistor. For the PNP and LPNP devices, reverse the signs of all voltages and currents.
The following variables are used:
Vbe = intrinsic base-intrinsic emitter voltage
Vbc = intrinsic base-intrinsic collector voltage
\(\mathrm{Vbs}=\) intrinsic base-substrate voltage
\(\mathrm{Vbw}=\) intrinsic base-extrinsic collector voltage (quasi-saturation only)
Vbx = extrinsic base-intrinsic collector voltage
Vce \(=\) intrinsic collector-intrinsic emitter voltage
Vjs \(=(\mathrm{NPN})\) intrinsic collector-substrate voltage
\(=(\) PNP ) intrinsic substrate-collector
voltage
\(=(\) LPNP \()\) intrinsic base-substrate voltage
\(\mathrm{Vt}=k \cdot \mathrm{~T} / q\) (thermal voltage)
\(k=\) Boltzmann's constant
\(q\) = electron charge
\(\mathrm{T} \quad=\) analysis temperature \(\left({ }^{\circ} \mathrm{K}\right)\)
Tnom = nominal temperature (set using the TNOM option)
Other variables are listed in Bipolar Transistor Model Parameters.

Positive current is current flowing into a terminal.

\section*{Bipolar Transistor Equations for DC Current}
```

Ib}=\mathrm{ base current = area }\cdot(\textrm{Ibe}1/\textrm{BF}+\textrm{Ibe2}+\textrm{Ibc}1/\mathbf{BR}+\textrm{Ibc}2
Ic = collector current = area}\cdot(\textrm{Ibe}1/\textrm{Kqb}-\textrm{Ibc}1/\textrm{Kqb}-\textrm{Ibc}1/\textrm{BR}-\textrm{Ibc}2
Ibe1 = forward diffusion current = IS. (e (evel(NF:VV)-1)
Ibe2 = non-ideal base-emitter current = ISE. ((eve/(NEVV)-1)
Ibc1 = reverse diffusion current = IS ((e)
Ibc2 = non-ideal base-collector current = ISC }\cdot(\mp@subsup{e}{}{\textrm{Vbb}(\textrm{N}\cdot
cdot\textrm{VI})}-1
Kqb = base charge factor = Kq1 }\cdot(1+(1+4\cdot\textrm{Kq2}2\mp@subsup{)}{}{\textrm{NK}})/
Kq1 = 1/(1- Vbc/VAF - Vbe/VAR)
Kq2 = Ibe1/IKF + Ibc 1/IKR
Is = substrate current =area}\cdot\mathbf{ISS}\cdot(\mp@subsup{e}{}{\mp@subsup{\textrm{v}}{\textrm{j}/(NSNV}{*}/-1)
Rb}=\mathrm{ actual base parasitic resistance

```

\section*{Case 1}
```

for: IRB = infinite (default value)
then: $\mathrm{Rb}=(\mathbf{R B M}+(\mathbf{R B}-\mathbf{R B M}) / \mathrm{Kqb}) /$ area

```

\section*{Case 2}

For: \(\operatorname{IRB}>0\)
then:
\(R b=\left(\mathbf{R B M}+3 \cdot(\mathbf{R B}-\mathbf{R B M}) \cdot \frac{\tan (\mathrm{x})-\mathrm{x}}{\mathrm{x} \cdot(\tan (\mathrm{x}))^{2}}\right) /\) area
where \(\left(\mathrm{i}+\left(144 / \pi^{2}\right) \cdot \mathrm{Ib} /(\text { area } \cdot \operatorname{IRB})\right)^{1 / 2}-1\)
\(\left(24 / \pi^{2}\right) \cdot(\mathrm{Ib} /(\operatorname{area} \cdot \operatorname{IRB}))^{1 / 2}\)

\section*{Bipolar Transistor Equations for Capacitance}

All capacitances, except Cbx, are between terminals of the intrinsic transistor which is inside of the collector, base, and emitter parasitic resistances. Cbx is between the intrinsic collector and the extrinsic base.

\section*{Base-Emitter Capacitance}

Cbe \(=\) base-emitter capacitance \(=\) Ctbe + area \(\cdot\) Cjbe
Ctbe \(=\) transit time capacitance \(=\mathrm{tf} \cdot \mathrm{Gbe}\)
\(\mathrm{tf}=\) effective TF \(=\mathbf{T F} \cdot\left(1+\mathbf{X T F} \cdot(\text { Ibe } 1 /(\text { Ibe } 1+\text { area } \cdot \text { ITF }))^{2} \cdot e^{\mathrm{Vbol(1.44} \mathrm{\cdot vF}}\right)\)
\(\mathrm{Gbe}=\mathrm{DC}\) base-emitter conductance \(=(d \mathrm{Ibe}) /(d \mathrm{Vb})\)
\(\mathrm{Ibe}=\mathrm{Ibe} 1+\mathrm{Ibe} 2\)
Cjbe \(=\mathbf{C J E} \cdot(1-\mathrm{Vbe} / \mathrm{VJE})^{\text {MIE }} \quad \quad I F\) Vbe \(\leq\) FC.VJE
Cjbe \(=\mathbf{C J E} \cdot(1-\mathrm{FC}))^{(1+\mathrm{MIE})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJE})+\mathrm{MJE} \cdot \mathrm{Vbe} / \mathrm{VJE}) I F \quad \mathrm{Vbe}>\mathrm{FC} \cdot \mathrm{VJE}\)

\section*{Base-Collector Capacitance}
\(\mathrm{Cbc}=\) base-collector capacitance \(=\mathrm{Ctbc}+\) area \(\cdot \mathbf{X C J c} \cdot \mathrm{Cjbc}\)
\(\mathrm{Ctbc}=\) transit time capacitance \(=\mathbf{T R} \cdot \mathbf{G b c}\)
\(\mathrm{Gbc}=\mathrm{DC}\) base-collector conductance \(=(d \mathrm{Ibc}) /(d \mathrm{Vbc})\)
Cjbc \(=\mathbf{C J C} \cdot(1-\mathrm{Vbc} / \mathbf{V J C})^{\text {-ме }} \quad I F\) Vbc \(<\) FC.VJC
Cjbc \(=\mathbf{C J C} \cdot(1-\mathbf{F C})^{(1+\mathrm{MJC})} \cdot(1 \mathrm{FC} \cdot(1+\mathrm{MJC})+\mathbf{M J C} \cdot \mathrm{Vbc} / \mathbf{V J C}) \quad I F \quad \mathrm{Vbc}>\mathrm{FC} \cdot \mathbf{V J C}\)

\section*{Extrinsic-Base to Intrinsic-Collector Capacitance}
\(\mathrm{Cbx}=\) extrinsic-base to intrinsic-collector capacitance \(=\) area \(\cdot(1-\mathbf{X C J C}) \cdot \mathrm{Cjbx}\)
\[
\begin{array}{ll}
\mathrm{Cjbx}=\mathbf{c J c} \cdot(1-\mathrm{Vbx} / \mathrm{VJC})^{\text {ммл }} & I F \quad \mathrm{Vbx} \leq \mathrm{FC} \cdot \mathrm{VJC} \\
\mathrm{Cjbx}=\mathbf{C J C} \cdot(1-\mathrm{FC})^{-(1+\mathrm{mc})} \cdot(1-\mathrm{FC} \cdot(1+\mathrm{MJC})+\mathrm{MJC} \cdot \mathrm{Vbx} / \mathrm{VJC}) & I F \quad \mathrm{Vbx}>\mathrm{FC} \cdot \mathrm{VJC}
\end{array}
\]

\section*{Substrate Junction Capacitance}
\(\mathrm{Cjs}=\) substrate junction capacitance \(=\) area \(\cdot \mathrm{Cjjs}\)
\[
\begin{array}{ll}
\mathrm{Cjjs}=\mathbf{C J S} \cdot(1-\mathrm{Vjs} / \mathbf{V J S})^{\text {msIs }}(\text { assumes } \mathbf{F C}=0) & I F \quad \mathrm{Vjs} \leq 0 \\
\mathrm{Cjjs}=\mathbf{C J S} \cdot(1+\mathbf{M J s} \cdot \mathrm{Vjs} / \mathbf{V J S}) & I F \quad \mathrm{Vjs}>0
\end{array}
\]

\section*{Bipolar Transistor Equations for Quasi-Saturation Effect}

Quasi-saturation is an operating region where the internal base-collector metallurgical junction is forward biased, while the external base-collector terminal remains reverse biased.
This effect is modeled by extending the intrinsic Gummel-Poon model, adding a new internal node, a controlled current source, Iepi, and two controlled capacitances, represented by the charges Qo and Qw. These additions are only included if the model parameter RCO is specified. See reference [3] of References for the derivation of this extension.
```

Iepi = area\cdot(VO.(Vt\cdot(K(Vbc)-K(Vbn)-ln((1+K(Vbc))/(1+K(Vbn))))+Vbc-Vbn))/RCO}\cdot(|Vbc-Vbn|+VO)
Qo =area QCO.(K(Vbc)-1-GAMMA/2)
Qw = area\cdotQCO.(K(Vbn)-1-GAMMA/2)
where
K(v) = (1+GAMMA 片(vNit)}\mp@subsup{)}{}{1/2

```

\section*{Bipolar Transistor Equations for Temperature Effect}
```

IS(T) = IS }\cdot\mp@subsup{e}{}{(TTT\mathrm{ Tom-1):EG/N/NVI).}}\cdot(\textrm{T}/\textrm{Tnom}\mp@subsup{)}{}{\mathrm{ xTIN}
where N = 1
ISE(T) = (ISE/(T/Tnom)}\mp@subsup{}{}{\mathbf{xTB}})\cdot\mp@subsup{e}{}{(T/Tmom-1):EG/(NEV).V).(T/Tnom)}\mp@subsup{)}{}{\textrm{XTINE}

```

```

ISS(T) = (ISS/(T/Tnom)}\mp@subsup{}{}{\textrm{xTB}})\cdot\mp@subsup{e}{}{(TTTnom-1):EG/(NS.vV)}.(\textrm{T}/\textrm{Tnom}\mp@subsup{)}{}{\textrm{xTINS}
BF(T) = BF.(T/Tnom)}\mp@subsup{}{}{\textrm{xTB}
BR(T) = BR.(T/Tnom)}\mp@subsup{}{}{\textrm{xTB}
RE(T) = RE.(1+TRE1.(T-Tnom)+TRE2.(T-Tnom)}\mp@subsup{}{}{2}
RB(T) = RB.(1+TRB1.(T-Tnom)+TRB2.(T-Tnom)}\mp@subsup{)}{}{2
RBM(T) = RBM.(1+TRM1.(T-Tnom)+TRM2.(T-Tnom)')
RC(T) = RC.(1+TRC1.(T-Tnom)+TRC2.(T-Tnom)}\mp@subsup{}{}{2}
VJE(T) = VJE.T/Tnom - 3.Vt\cdotln(T/Tnom) - Eg(Tnom)}\cdot\textrm{T}/\mathrm{ Tnom + Eg(T)
VJC(T) = vJc}\cdot\textrm{T}/\mathrm{ Tnom - 3.Vt}\cdot\operatorname{ln}(\textrm{T}/\textrm{Tnom}) - Eg(Tnom).T/Tnom + Eg(T
VJS(T) = VJS.T/Tnom - 3.Vt\cdotln(T/Tnom) - Eg(Tnom).T/Tnom + Eg(T)
where Eg(T) = silicon bandgap energy = 1.16-.000702\cdotT}\mp@subsup{\textrm{T}}{}{2}/(\textrm{T}+1108
CJE(T) = CJE.(1+MJE·(.0004.(T-Tnom)+(1-VJE(T)/VJE)))
CJC(T) = CJC·(1+MJC·(.0004.(T-Tnom)+(1-VJC(T)/VJC)))
CJS(T) = CJS.(1+MJS.(.0004.(T-Tnom)+(1-VJS(T)/VJS)))

```

\section*{Bipolar Transistor Equations for Noise}

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power densities (per unit bandwidth):
\begin{tabular}{ll}
\hline & \multicolumn{1}{c}{ Parasitic Resistances Thermal Noise } \\
RC & \(\mathrm{Ic}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RC} /\) area \()\) \\
RB & \(\mathrm{Ib}^{2}=4 \cdot k \cdot \mathrm{~T} / \mathrm{RB}\) \\
RE & \(\mathrm{Ie}^{2}=4 \cdot k \cdot \mathrm{~T} /(\mathrm{RE} /\) area \()\) \\
& Base and Collector Currents Shot and Flicker Noise \\
IB & \(\mathrm{Ib}^{2}=2 \cdot q \cdot \mathrm{Ib}+\mathrm{KF} \cdot \mathrm{Ib} \times \mathrm{F} /\) FREQUENCY \\
IC & \(\mathrm{Ic}^{2}=2 \cdot q \cdot \mathrm{Ic}\) \\
\hline
\end{tabular}

\section*{References}

For a more information on bipolar transistor models, refer to:
[1] Ian Getreu, Modeling the Bipolar Transistor, Tektronix, Inc. part\# 062-2841-00.
For a generally detailed discussion of the U.C. Berkeley SPICE models, including the bipolar transistor, refer to:
[2] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, McGraw-Hill, 1988.

For a description of the extension for the quasi-saturation effect, refer to:
[3] G. M. Kull, L. W. Nagel, S. W. Lee, P. Lloyd, E. J. Prendergast, and H. K. Dirks, "A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects," IEEE Transactions on Electron Devices, ED-32, 1103-1113 (1985).

\section*{Resistor}

General Form
R＜name〉＜（＋）node〉＜（－）node＞［model name］＜value〉
\(+[T C=\langle T C 1\rangle[,\langle T C 2\rangle]]\)
Examples RLOAD 1502 K
R2 12 2．4E4 TC＝． \(015,-.003\)
RFDBCK 333 RMOD 10K
Model Form


\section*{Arguments and Options}
\((+)\) and（－）nodes
Define the polarity when the resistor has a positive voltage across it．
［model name］
Affects the resistance value；see Resistor Value Formulas．
Comments
The first node listed（or pin 1 in Schematics）is defined as positive．The voltage across the component is therefore defined as the first node voltage minus the second node voltage．

Positive current flows from the（＋）node through the resistor to the（－）node．Current flow from the first node through the component to the second node is considered positive．
Temperature coefficients for the resistor can be specified in－line，as in the second example．If the resistor has a model specified，then the coefficients from the model are used for the temperature updates；otherwise，the in－line values are used．In both cases the temperature coefficients have default values of zero．Expressions cannot be used for the in－line coefficients．

\section*{Schematics Symbols}

For standard R parts，the effective value of the part is set directly by the VALUE attribute．For the variable resistor，R＿VAR，the effective value is the product of the base value（VALUE） and multiplier（SET）．

In general，resistors should have positive component values（VALUE attribute）．In all cases， components must not be given a value of zero．

However，there are cases when negative component values are desired．This occurs most often in filter designs that analyze an RLC circuit equivalent to a real circuit．When transforming from the real to the RLC equivalent，it is possible to end up with negative component values．

PSpice A/D allows negative component values for bias point, DC sweep, AC , and noise analyses. In the case of resistors, the noise contribution from negative component values come from the absolute value of the component (components are not allowed to generate negative noise). A transient analysis may fail for a circuit with negative components. Negative components may create instabilities in time that the analysis cannot handle.
\begin{tabular}{llll}
\hline Symbol Name & Model Type & Attribute & Attribute Description \\
\hline R & resistor & VALUE & resistance \\
& & TC & \begin{tabular}{l} 
linear and quadratic temperature \\
coefficients
\end{tabular} \\
& & TOLERANCE & device tolerance (see page 1-24) \\
R_VAR & variable resistor & VALUE & base resistance \\
& & SET & multiplier \\
\hline
\end{tabular}

The RBREAK part must be used if you want a LOT tolerance. In that case, use the Model Editor to edit the RBREAK instance.

\section*{Breakout Parts}

For non-stock passive and semiconductor devices, Schematics has a set of breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix BREAK. By default, the model name is the same as the part name and references the appropriate device model with all parameters set at their default. For instance, the DBREAK part references the DBREAK model, which is derived from the intrinsic PSpice A/D D model (.MODEL DBREAK D). Another approach is to use the model editor to derive an instance model and customize this. For example, you could add device and/or lot tolerances to model parameters.
For breakout part RBREAK, the effective value is computed from a formula that is a function of the specified VALUE attribute.
\begin{tabular}{lllll}
\hline Part Type & \begin{tabular}{l} 
Symbol \\
Name
\end{tabular} & \begin{tabular}{l} 
Symbol \\
Library File
\end{tabular} & Attribute & Description \\
\hline resistor & RBREAK & breakout.s 1 b & VALUE & resistance \\
& & & MODEL & RES model name \\
\hline
\end{tabular}

\section*{Resistor Model Parameters}
\begin{tabular}{|c|c|c|c|}
\hline Model Parameters* & Description & Units & Defaul t \\
\hline R & resistance multiplier & & 1.0 \\
\hline TC1 & linear temperature coefficient & \({ }^{\circ} \mathrm{C}^{-1}\) & 0.0 \\
\hline TC2 & quadratic temperature coefficient & \({ }^{\circ} \mathrm{C}^{-2}\) & 0.0 \\
\hline TCE & exponential temperature coefficient & \(\% /{ }^{\circ} \mathrm{C}\) & 0.0 \\
\hline T_ABS & absolute temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_MEASURED & measured temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_REL_GLOBAL & relative to current temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline T_REL_LOCAL & relative to AKO model temperature & \({ }^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}

\footnotetext{
* For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (Model).
}

\section*{Resistor Equations}

\section*{Resistor Value Formulas}

One If [model name] is included and TCE is specified, then the resistance is given by: <value>•R•1.01 \({ }^{\text {tce.(T-TTom) }}\)
where <value> is normally positive (though it can be negative, but not zero). Tnom is the nominal temperature (set using TNOM option).

TwO If [model name] is included and TCE is not specified, then the resistance is given by: <value>•R.(1+TC1•(T-Tnom)+TC2.(T-Tnom) \({ }^{2}\) )
where <value> is usually positive (though it can be negative, but not zero).

\section*{Resistor Equation for Noise}

Noise is calculated assuming a 1.0-hertz bandwidth. The resistor generates thermal noise using the following spectral power density (per unit bandwidth):
\(\mathrm{i}^{2}=\)
\(4 \cdot k \cdot \mathrm{~T} /\) resistance```


[^0]:    * For more information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see .MODEL (Model).

