## .AC (AC Analysis)

PurposeThe .AC command calculates the frequency response of a circuit over a range of frequencies.General Form.AC <sweep type> <points value><br/>+ <start frequency value> <end frequency value>Examples.AC LIN 101 100Hz 200Hz<br/>.AC OCT 10 1kHz 16kHz<br/>.AC DEC 20 1MEG 100MEG

#### Arguments and Options

<sweep type>

Must be LIN, OCT, or DEC, as described below.

| Parameter | Description      | Description                                                                                                                                           |
|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIN       | linear sweep     | The frequency is swept linearly from the starting to the ending frequency. The <points value=""> is the total number of points in the sweep.</points> |
| OCT       | sweep by octaves | The frequency is swept logarithmically by octaves. The <points value=""> is the number of points per octave.</points>                                 |
| DEC       | sweep by decades | The frequency is swept logarithmically by decades. The <points value=""> is the number of points per decade.</points>                                 |

<points value>

Specifies the number of points in the sweep, using an integer.

<start frequency value> <end frequency value>

The end frequency value must not be less than the start frequency value, and both must be greater than zero. The whole sweep must include at least one point. If a group delay (G suffix) is specified as an output, the frequency steps must be close enough together that the phase of that output changes smoothly from one frequency to the next. Calculate group delay by subtracting the phases of successive outputs and dividing by the frequency increment.

**Comments** A <u>.PRINT (Print)</u>, <u>.PLOT (Plot)</u>, or <u>.PROBE (Probe)</u> command must be used to get the results of the AC sweep analysis.

AC analysis is a linear analysis. The simulator calculates the frequency response by linearizing the circuit around the bias point.

All independent voltage and current sources that have AC values are inputs to the circuit. During AC analysis, the only independent sources that have nonzero amplitudes are those using AC specifications. The SIN specification does not count, as it is used only during transient analysis.

To analyze nonlinear functions such as mixers, frequency doublers, and AGC, use **.TRAN** (**Transient Analysis**).



## .DC (DC Analysis)

PurposeThe .DC command performs a linear, logarithmic, or nested DC sweep analysis on the circuit.<br/>The DC sweep analysis calculates the circuit's bias point over a range of values for<br/><sweep variable name>.

**Sweep Type** The sweep can be linear, logarithmic, or a list of values.

| Parameter | Description      | Meaning                                                                     |
|-----------|------------------|-----------------------------------------------------------------------------|
| LIN       | linear sweep     | The sweep variable is swept linearly from the starting to the ending value. |
| OCT       | sweep by octaves | Sweep by octaves. The sweep variable is swept logarithmically by octaves.   |
| DEC       | sweep by decades | Sweep by decades. The sweep variable is swept logarithmically by decades.   |
| LIST      | list of values   | Use a list of values.                                                       |



## **Linear Sweep**

| General Form | .DC [LIN] <sweep name="" variable=""><br/>+ <start value=""> <end value=""> <increment value=""><br/>+ [nested sweep specification]</increment></end></start></sweep> |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples     | .DC VIN25 .25 .05<br>.DC LIN I2 5mA -2mA 0.1mA<br>.DC VCE OV 10V .5V IB OmA 1mA 50uA<br>.DC RES RMOD(R) 0.9 1.1 .001                                                  |

#### **Arguments and Options**

<start value> Can be greater or less than <end value>: that is, the sweep can go in either direction.
<increment value> The step size. This value must be greater than zero.
Comments
The sweep variable is swept linearly from the starting to the ending value.

The keyword LIN is optional.

## **Logarithmic Sweep**

General Form .DC <logarithmic sweep type> <sweep variable name>
+ <start value> <end value> <points value>
+ [nested sweep specification]
Examples .DC DEC NPN QFAST(IS) 1E-18 1E-14 5

#### **Arguments and Options**

## **Nested Sweep**

| General Form | .DC <sweep name="" variable=""> LIST <value>*<br/>+[nested sweep specification]</value></sweep> |
|--------------|-------------------------------------------------------------------------------------------------|
| Examples     | .DC TEMP LIST 0 20 27 50 80 100 PARAM Vsupply 7.5 15 .5                                         |

#### **Arguments and Options**

<sweep variable name>

After the DC sweep is finished, the value associated with <sweep variable name> is set back to the value it had before the sweep started. The following items can be used as sweep variables in a DC sweep:

| Parameter           | Description                                                                                              | Meaning                                                                                                                                                                                                                                                                  |
|---------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source              | A name of an independent voltage or current source.                                                      | During the sweep, the source's voltage or current is set to the sweep value.                                                                                                                                                                                             |
| Model<br>Parameter  | A model type and model<br>name followed by a model<br>parameter name in<br>parenthesis.                  | The parameter in the model is set to the<br>sweep value. The following model<br>parameters cannot be (usefully) swept: L<br>and W for the MOSFET device (use LD<br>and WD as a work around), and any<br>temperature parameters, such as TC1 and<br>TC2 for the resistor. |
| Temperature         | Use the keyword TEMP for<br><sweep name="" variable="">.</sweep>                                         | Set the temperature to the sweep value.<br>For each value in the sweep, all the<br>circuit components have their model<br>parameters updated to that temperature.                                                                                                        |
| Global<br>Parameter | Use the keyword PARAM,<br>followed by the parameter<br>name, for<br><sweep name="" variable="">.</sweep> | During the sweep, the global parameter's value is set to the sweep value and all expressions are reevaluated.                                                                                                                                                            |

#### Comments

For a nested sweep, a second sweep variable, sweep type, start, end, and increment values can be placed after the first sweep. In the nested sweep example, the first sweep is the inner loop: the entire first sweep is performed for each value of the second sweep.

When using a list of values, there are no start and end values. Instead, the numbers that follow the keyword LIST are the values that the sweep variable is set to.

The rules for the values in the second sweep are the same as for the first. The second sweep generates an entire **<u>PRINT (Print)</u>** table or <u>**PLOT (Plot)**</u> plot for each value of the sweep. Probe displays nested sweeps as a family of curves.



## .END (End of Circuit)

Purpose The .END command marks the end of the circuit. All the data and every other command must come before it. When the .END command is reached, PSpice does all the specified analyses on the circuit.

| General Form | .END                                                |
|--------------|-----------------------------------------------------|
| Examples     | * 1st circuit in file<br>circuit definition<br>.END |
|              | * 2nd circuit in file<br>circuit definition<br>.END |

. FND

#### **Comments**

There can be more than one circuit in an input file. Each circuit is marked by an .END command. PSpice processes all the analyses for each circuit before going on to the next one.

Everything is reset at the beginning of each circuit. Having several circuits in one file gives the same results as having them in separate files and running each one separately. However, all the simulation results go into one . OUT file and one . DAT file. This is a convenient way to arrange a set of runs for overnight operation.



The last statement in an input file must be an .END command.



## .MODEL (Model)

| Purpose      | The .MODEL command defines a set of device parameters which can be referenced by devices in the circuit.                                                                                                                                                                                                                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Form | .MODEL <model name=""> [AKO: <reference model="" name="">]<br/>+ <model type=""><br/>+ ([<parameter name=""> = <value> [tolerance specification]]*<br/>+ [T_MEASURED=<value>] [[T_ABS=<value>] or<br/>+ [T_REL_GLOBAL=<value>] or [T_REL_LOCAL=<value>]])</value></value></value></value></value></parameter></model></reference></model>                                         |
| Examples     | .MODEL RMAX RES (R=1.5 TC1=.02 TC2=.005)<br>.MODEL DNOM D (IS=1E-9)<br>.MODEL QDRIV NPN (IS=1E-7 BF=30)<br>.MODEL MLOAD NMOS(LEVEL=1 VT0=.7 CJ=.02pF)<br>.MODEL CMOD CAP (C=1 DEV 5%)<br>.MODEL DLOAD D (IS=1E-9 DEV .5% LOT 10%)<br>.MODEL DLOAD D (IS=1E-9 DEV .5% LOT 10%)<br>.MODEL RTRACK RES (R=1 DEV/GAUSS 1% LOT/UNIFORM 5%)<br>.MODEL QDR2 AKO:QDRIV NPN (BF=50 IKF=50m) |

#### **Arguments and Options**

<model name>

The model name which is used to reference a particular model.

<reference model name>

The model types of the current model and the AKO (A Kind Of) reference model must be the same. The value of each parameter of the referenced model is used unless overridden by the current model, e.g., for QDR2 in the last example, the value of IS derives from QDRIV, but the values of BF and IKF come from the current definition. Parameter values or formulas are transferred, but not the tolerance specification. The referenced model can be in the main circuit file, accessed through a .INC command, or it can be in a library file; see **\_LIB** (Library File).

<model type>

Must be one of the types outlined in the table that follows.

Devices can only reference models of a corresponding type; for example:

- A JFET can reference a model of types NJF or PJF, but not of type NPN.
- There can be more than one model of the same type in a circuit, although they must have different names.

Following the <model type> is a list of parameter values enclosed by parentheses. None, any, or all of the parameters can be assigned values. Default values are used for all unassigned parameters. The lists of parameter names, meanings, and default values are found in the individual device descriptions.



## .OP (Bias Point)

| Purpose      | The .OP command causes detailed information about the bias point to be printed.                                                                                                                                                                                                                              |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| General Form | .0P                                                                                                                                                                                                                                                                                                          |  |
| Examples     | .0P                                                                                                                                                                                                                                                                                                          |  |
| Comments     | This command does not write output to the Probe data file. The bias point is calculated regardless of whether there is a .OP command. Without the .OP command, the only information about the bias point in the output is a list of the node voltages, voltage source currents, and total power dissipation. |  |
|              | Using a .OP command can cause the small-signal (linearized) parameters of all the nonlinear controlled sources and all the semiconductor devices to be printed in the output file.                                                                                                                           |  |
|              | The .OP command controls the output for the regular bias point only. The <b>.TRAN (Transient <u>Analysis</u>)</b> command controls the output for the transient analysis bias point.                                                                                                                         |  |
|              | If no other analysis is performed, then no Probe data file is created                                                                                                                                                                                                                                        |  |

If no other analysis is performed, then no Probe data file is created.



If the different output variables differ considerably in their output ranges, then the plot is given more than one y-axis using ranges corresponding to the different output variables.



The y-axis of frequency response plots (AC) is always logarithmic.

The last example illustrates how to plot the voltage at a node that has a name rather than a number. The first item to plot is a node voltage, the second item is the voltage across a resistor, and the third item is another node voltage, even though the second and third items both begin with the letter R. The square brackets force the interpretation of names to mean node names.



## .PRINT (Print)

| Purpose      | The .PRINT command allows results from DC, AC, noise, and transient analyses to be an output in the form of tables, referred to as print tables in the output file.                                                                                                                                                             |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| General Form | .PRINT[/DGTLCHG] <analysis type=""> [output variable]*</analysis>                                                                                                                                                                                                                                                               |  |
| Examples     | .PRINT DC V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)<br>.PRINT AC VM(2) VP(2) VM(3,4) VG(5) VDB(5) IR(6) II(7)<br>.PRINT NOISE INOISE ONOISE DB(INOISE) DB(ONOISE)<br>.PRINT TRAN V(3) V(2,3) ID(M2) I(VCC)<br>.PRINT TRAN D(QA) D(QB) V(3) V(2,3)<br>.PRINT/DGTLCHG TRAN QA QB RESET<br>.PRINT TRAN V(3) V(R1) V([RESET]) |  |

The last example illustrates how to print a node that has a name, rather than a number. The first item to print is a node voltage, the second item is the voltage across a resistor, and the third item to print is another node voltage, even though the second and third items both begin with the letter R. The square brackets force the names to be interpreted as node names.

#### **Arguments and Options**

#### [/DGTLCHG]

For digital output variables only. Values are printed for each output variable whenever one of the variables changes.

<analysis type>

Only one analysis type— DC, AC, NOISE, or TRAN—can be specified for each .PRINT command.

#### <output variable>

Following the analysis type is a list of the output variables. There is no limit to the number of output variables: the printout is split up depending on the width of the data columns (set using NUMDGT option) and the output width (set using WIDTH option). See **.PROBE (Probe)** for the syntax of output variables.

**Comments** The values of the output variables are printed as a table where each column corresponds to one output variable. You can change the number of digits printed for analog values by using the NUMDGT option of the **.OPTIONS (Analysis Options)** command.

An analysis can have multiple .PRINT commands.



## .PROBE (Probe)

| Purpose      | The .PROBE command writes the results from DC, AC, and transient analyses to a data file used by Probe.                                                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Form | .PROBE[/CSDF][output variable]*                                                                                                                                                                                                                   |
| Examples     | <pre>.PROBE<br/>.PROBE V(3) V(2,3) V(R1) I(VIN) I(R2) IB(Q13) VBE(Q13)<br/>.PROBE/CSDF<br/>.PROBE V(3) V(R1) V([RESET])<br/>.PROBE D(QBAR)<br/>The first example (with no output variables) writes all the node voltages and all the device</pre> |

The first example (with no output variables) writes all the node voltages and all the device currents to the data file. The list of device currents written is the same as the device currents allowed as output variables.

The second example writes only those output variables specified to the data file, to restrict the size of the data file.

The third example creates a data file in a text format using the Common Simulation Data File (CSDF) format, not a binary format. This format is used for transfers between different computer families. CSDF files are larger than regular text files.

The fourth example illustrates how to specify a node that has a name rather than a number. The first item to output is a node voltage, the second item is the voltage across a resistor, and the third item to output is another node voltage, even though the second and third items both begin with the letter R. The square brackets force the interpretation of names to mean node names.

The last example writes only the output at digital node QBAR to the data file, to restrict the size of the data file.

#### **Arguments and Options**

[output variable]

This section describes the types of output variables allowed in a **<u>PRINT (Print)</u>**, <u>**PLOT (Plot)**</u>, and .PROBE command. Each .PRINT or .PLOT can have up to 8 output variables. This format is similar to that used when calling up waveforms while running Probe.

See the tables below for descriptions of the possible output variables. If .PROBE is used without specifying a list of output variables, all of the circuit voltages and currents are stored for post-processing. When an output variable list is included, the data stored is limited to the listed items. This form is intended for users who want to limit the size of the Probe data file.

**Comments** Refer to your PSpice user's guide for a description of Probe, for information about using the Probe data file, and for more information on the use of text files in Probe. You can also consult Probe Help.



Unlike the .PRINT and .PLOT commands, there are no analysis names before the output variables. Also, the number of output variables is unlimited.



## **DC Sweep and Transient Analysis Output Variables**

| General Form          | Meaning of Output Variable                                                             |
|-----------------------|----------------------------------------------------------------------------------------|
| D( <name>)</name>     | digital value of <name> (a digital node)*</name>                                       |
| I( <name>)</name>     | current through a two terminal device                                                  |
| Ix( <name>)</name>    | current into a terminal of a three or four terminal device (x is one of B, D, G, or S) |
| Iz( <name>)</name>    | current into one end of a transmission line (z is either A or B)                       |
| V( <node>)</node>     | voltage at a node                                                                      |
| V(<+ node>, <- node>) | voltage between two nodes                                                              |
| V( <name>)</name>     | voltage across a two-terminal device                                                   |
| Vx( <name>)</name>    | voltage at a non-grounded terminal of a device (see Ix)                                |
| Vz( <name>)</name>    | voltage at one end of a transmission line (z is either A or B)                         |
| Vxy( <name>)</name>   | voltage across two terminals of a three or four terminal device type                   |

For DC sweep and transient analysis, these are the available output variables:

\*These values are available for transient and DC analysis only. For the .PRINT/DGTLCHG statement, the D(-) is optional.

| Example  | Meaning                                          |
|----------|--------------------------------------------------|
| D(QA)    | the value of digital node QA                     |
| I(D5)    | current through diode D5                         |
| IG(J10)  | current into gate of J10                         |
| V(3)     | voltage between node three and ground            |
| V(3,2)   | voltage between nodes three and two              |
| V(R1)    | voltage across resistor R1                       |
| VA(T2)   | voltage at port A of T2                          |
| VB(Q3)   | voltage between base of transistor Q3 and ground |
| VGS(M13) | gate-source voltage of M13                       |

## **Multiple-Terminal Devices**

For the V(<name>) and I(<name>) forms, where <name> must be the name of a two-terminal device, the devices are:

| Character ID | Two-Terminal Device                |  |  |
|--------------|------------------------------------|--|--|
| С            | capacitor                          |  |  |
| D            | diode                              |  |  |
| Ε            | voltage-controlled voltage source  |  |  |
| F            | current-controlled current source  |  |  |
| G            | voltage-controlled current source  |  |  |
| Н            | current-controlled voltage source) |  |  |
| Ι            | independent current source         |  |  |
| L            | inductor                           |  |  |
| R            | resistor                           |  |  |
| S            | voltage-controlled switch          |  |  |
| V            | independent voltage source         |  |  |
| W            | current-controlled switch          |  |  |

For the Vx(<name>), Vxy(<name>), and Ix(<name>) forms, where <name> must be the name of a three or four-terminal device and *x* and *y* must each be a terminal abbreviation, the devices and the terminals areas follows. For the Vz(<name>) and Iz(<name>) forms, <name> must be the name of a transmission line (T device) and *z* must be A or B.

| Three & Four-Terminal Device Type | Terminal Abbreviation |  |
|-----------------------------------|-----------------------|--|
| B (GaAs MESFET)                   | D (drain)             |  |
|                                   | G (gate)              |  |
|                                   | S (source)            |  |
| J (Junction FET)                  | D (drain)             |  |
|                                   | G (gate)              |  |
|                                   | S (source)            |  |
| M (MOSFET)                        | D (drain)             |  |
|                                   | G (gate)              |  |
|                                   | S (source)            |  |
|                                   | B (bulk, substrate)   |  |
| Q (Bipolar transistor)            | C (collector)         |  |
|                                   | B (base)              |  |
|                                   | E (emitter)           |  |
|                                   | S (substrate)         |  |

| Three & Four-Terminal Device Type | <b>Terminal Abbreviation</b><br>Va (near side voltage) |  |
|-----------------------------------|--------------------------------------------------------|--|
| T (transmission line)             |                                                        |  |
|                                   | Ia (near side current)                                 |  |
|                                   | Vb (far side voltage)                                  |  |
|                                   | Ib (far side current)                                  |  |
| Z (IGBT)                          | C (collector)                                          |  |
|                                   | G (gate)                                               |  |
|                                   | E (emitter)                                            |  |

## **AC Analysis**

For AC analysis, the output variables listed in the preceding section are augmented by adding a suffix.

<del>&</del>Z

For AC analysis, the suffixes are ignored for a .PROBE command, but can be used in a <u>.PRINT (Print)</u> command and a <u>.PLOT (Plot)</u> command, and when adding a trace in Probe. For example, in a .PROBE command, VDB(R1) is translated to V(R1), which is the raw data.

For these devices, you need to put a zero-valued voltage source in series with the device (or terminal) of interest before you can print or plot the current through this voltage source.

| Suffix   | Meaning of Output Variables                     |  |  |
|----------|-------------------------------------------------|--|--|
| none     | magnitude                                       |  |  |
| DB       | magnitude in decibels                           |  |  |
| G        | group delay (-dPHASE/dFREQUENCY)                |  |  |
| Ι        | imaginary part                                  |  |  |
| Μ        | magnitude                                       |  |  |
| Р        | phase in degrees                                |  |  |
| R        | real part                                       |  |  |
|          |                                                 |  |  |
| Examples | Meaning of Output Variables for AC Analysis     |  |  |
| II(R13)  | imaginary part of current through R13           |  |  |
| IGG(M3)  | group delay of gate current for M3              |  |  |
| IR(VIN)  | real part of I through VIN                      |  |  |
| IAG(T2)  | group delay of current at port A of T2          |  |  |
| V(2,3)   | magnitude of complex voltage across nodes 2 & 3 |  |  |
| VDB(R1)  | db magnitude of V across R1                     |  |  |
| VBEP(Q3) | phase of base-emitter V at Q3                   |  |  |
| VM(2)    | magnitude of V at node 2                        |  |  |



Current outputs for the F and G devices are not available for DC and transient analyses.

## **Noise Analysis**

For noise analysis, the output variables are predefined as follows:

| Output Variable | Meaning of Output Variables for Noise Analysis |  |
|-----------------|------------------------------------------------|--|
| INOISE          | Total RMS summed noise at input node           |  |
| ONOISE          | INOISE equivalent at output node               |  |
| DB(INOISE)      | INOISE in decibels                             |  |
| DB(ONOISE)      | ONOISE in decibels                             |  |



<u>**.PRINT** (Print)</u> and <u>**.PLOT** (Plot)</u> cannot be used for the noise from any one device. However, the print interval on the <u>.NOISE (Noise Analysis)</u> command can be used to output this information.



## .TEMP (Temperature)

**Purpose** The .TEMP command sets the temperature at which all analyses are done.

General Form .TEMP <temperature value>\*

Examples

.TEMP 125 .TEMP 0 27 125

**Comments** The temperatures are in degrees Centigrade. If more than one temperature is given, then all analyses are performed for each temperature.

It is assumed that the model parameters were measured or derived at the nominal temperature, TNOM (27°C by default). See the <u>.OPTIONS (Analysis Options)</u> command for setting TNOM.

.TEMP behaves similarly to the list variant of the <u>.STEP (Parametric Analysis)</u> statement, with the stepped variable being the temperature.



## **.TF** (Transfer)

| Purpose      | The .TF command/statement causes the small-signal DC gain to be calculated by linearizing the circuit around the bias point. |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| General Form | .TF <output variable=""> <input name="" source=""/></output>                                                                 |  |  |

Examples .TF V(5) VIN .TF I(VDRIV) ICNTRL

#### **Arguments and Options**

<output variable> This has the same format and meaning as in the <u>.PRINT (Print)</u> statement.

CommentsThe gain from <input source name> to <output variable> and the input and output resistances<br/>are evaluated and written to the output file. This output does not require a .PRINT (Print),<br/>.PLOT (Plot), or .PROBE (Probe) statement.When <output variable> is a current, it is<br/>restricted to be the current through a voltage source.



The results of the .TF command are only available in the output file. They cannot be viewed in Probe.



## **.TRAN** (Transient Analysis)

| Purpose      | The .TRAN command causes a transient analysis to be performed on the circuit and specifies the time period for the analysis.    |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| General Form | .TRAN[/OP] <print step="" value=""> <final time="" value=""><br/>+[no-print value [step ceiling value]][SKIPBP]</final></print> |  |
| Examples     | .TRAN 1ns 100ns<br>.TRAN/OP 1ns 100ns 20ns SKIPBP<br>.TRAN 1ns 100ns 0ns .1ns                                                   |  |

#### **Arguments and Options**

[/OP]

Causes the same detailed printing of the bias point that the <u>OP (Bias Point)</u> command does for the regular bias point. Without using this option, only the node voltages are printed for the transient analysis bias point.

#### <print step value>

Sets the time interval used for printing (.PRINT), plotting (.PLOT), or performing a Fourier integral on (.FOUR) the results of the transient analysis.

Since the results are computed at different times than they are printed, a 2nd-order polynomial interpolation is used to obtain the printed values. This applies only to **.PRINT (Print)**, **.PLOT (Plot)**, and **.FOUR (Fourier Analysis)** outputs and does not affect Probe.

#### <final time value>

Sets the end time for the analysis.

#### [no-print value]

Sets the time interval (from TIME=0) that is not printed, plotted, or given to Probe.

#### [step ceiling value]

Overrides the default ceiling on the internal time step with a lower value.

#### [SKIPBP]

Skips calculation of the bias point.

When this option is used, the bias conditions are fully determined by the IC= specifications for capacitors and inductors.



**Comments** The transient analysis calculates the circuit's behavior over time, always starting at TIME=0 and finishing at <final time value>, but you can suppress the output of a portion of the analysis. Use a **.PRINT (Print)**, **.PLOT (Plot)**, **.FOUR (Fourier Analysis)**, or **.PROBE (Probe)** to get the results of the transient analysis.

Prior to performing the transient analysis, PSpice computes a bias point for the circuit separate from the regular bias point. This is necessary because at the start of a transient analysis, the independent sources can have different values than their DC values.

The internal time step of the transient analysis adjusts as the analysis proceeds: over intervals when there is little activity, the time step is increased, and during busy intervals it is decreased. The default ceiling on the internal time step is <final time value>/50, but when there are no charge storage elements, inductances, or capacitances in the circuit, the ceiling is <print step value>.

The .TRAN command also sets the variables TSTEP and TSTOP, which are used in defaulting some waveform parameters. TSTEP is equal to <print step value> and TSTOP is equal to <final time value>.

Refer to your PSpice user's guide for more information on setting initial conditions.



## \* (Comment)

Purpose A statement beginning with an asterisk \* is a comment line, which PSpice ignores. \* [any text] **General Form** \* This is an example of Examples \* a multiple-line comment Use an asterisk at the beginning of each line you want to be a comment. A single asterisk does Comments not extend to subsequent lines. For example: \* .MODEL ABC NMOS (. . . . + . . . .) produces an error message, because the second line is not covered by the first asterisk. The use of comment statements throughout the input is recommended. It is good practice to insert a comment line just before a subcircuit definition to identify the nodes, for example: TAL 0.U.T

| *       |       | +1N | - 1 N | V+ | V - | +001 | -001 |
|---------|-------|-----|-------|----|-----|------|------|
| .SUBCKT | OPAMP | 100 | 101   | 1  | 2   | 200  | 201  |

or to identify major blocks of circuitry.



## ; (In-line Comment)

| Purpose      | A semicolon ; is treated as the end of a line.                                                                                                                                                                                                                                                     |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| General Form | circuit file text ;[any text]                                                                                                                                                                                                                                                                      |  |  |  |
| Examples     | R13 6 8 10 ; R13 is a<br>; feedback resistor<br>C3 15 0 .1U ; decouple supply                                                                                                                                                                                                                      |  |  |  |
| Comments     | The simulator moves on to the next line in the circuit file. The text on the line after the semicolon ; is a comment and has no effect. The use of comments throughout the input is recommended. This type of comment can also replace comment lines, which must start with * in the first column. |  |  |  |

Trailing in-line comments that extend to more that one line can use a semicolon to mark the beginning of the subsequent comment lines, as shown in the example.



## + (Line Continuation)

| Purpose      | A plus sign + is treated as the continuation of the previous line.                                                                                                     |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| General Form | circuit file text<br>+ more text                                                                                                                                       |  |  |
| Examples     | .DISTRIBUTION bi_modal (-1,1) (5,1) (5,0) (.5,0)<br>+ (.5,1) (1,1)                                                                                                     |  |  |
| Comments     | Because the simulator reads the line preceded by a plus sign as a continuation of the previous line, you can use the plus sign to break up long lines of command text. |  |  |



# **Analog Devices**

| Letter | Device Type                              | Letter | Device Type                              |
|--------|------------------------------------------|--------|------------------------------------------|
| В      | <u>GaAsFET</u>                           | Ν      | Digital Input (N Device)                 |
| С      | <u>Capacitor</u>                         | 0      | <u>Digital Output (O Device)</u>         |
| D      | <u>Diode</u>                             | Q      | <b>Bipolar Transistor</b>                |
| E      | Voltage-Controlled<br>Voltage Source     | R      | <u>Resistor</u>                          |
| F      | Current-Controlled<br>Current Source     | S      | Voltage-Controlled Switch                |
| G      | Voltage-Controlled<br>Current Source     | т      | Transmission Line                        |
| н      | Current-Controlled<br>Voltage Source     | U      | Digital Primitive Summary                |
| I      | Independent Current<br>Source & Stimulus | U STIM | Stimulus Devices                         |
| J      | Junction FET                             | V      | Independent Voltage<br>Source & Stimulus |
| К      | Inductor Coupling<br>(and Magnetic Core) | W      | <b>Current-Controlled Switch</b>         |
| K      | <u>Transmission Line</u><br>Coupling     | X      | Subcircuit Instantiation                 |
| L      | Inductor                                 | Z      | <u>IGBT</u>                              |
| Μ      | New! MOSFET                              |        |                                          |

## Digital Devices

Commands



## Capacitor

General Form C<name> <(+) node> <(-) node> [model name] <value> [IC=<initial value>]
Examples CLOAD 15 0 20pF
C2 1 2 .2E-12 IC=1.5V
CFDBCK 3 33 CMOD 10pF
.MODEL <model name> CAP [model parameters]



#### **Arguments and Options**

(+) and (-) nodes

Define the polarity when the capacitor has a positive voltage across it. The first node listed (or pin one in Schematics) is defined as positive. The voltage across the component is therefore defined as the first node voltage less the second node voltage.

[model name]

If [model name] is left out, then <value> is the capacitance in farads. If [model name] is specified, then the value is given by the model parameters; see <u>Capacitor Value</u> Formula.

#### <initial value>

The initial voltage across the capacitor during the bias point calculation. It can also be specified in a circuit file using a .IC command as follows:

.IC V(+node, -node) <initial value>

**Comments** Positive current flows from the (+) node through the capacitor to the (-) node. Current flow from the first node through the component to the second node is considered positive.

For details on using the .IC command in a circuit file, see <u>JC (Initial Bias Point Condition)</u> and refer to your PSpice user's guide for more information.

The initial voltage across the capacitor can also be set in Schematics by using the IC1 symbol if the capacitor is connected to ground or by using the IC2 symbol for setting the initial conditions between two nodes. These symbols can be found in special.slb.

For more information about setting initial conditions, refer to the <u>Schematics User's Guide</u> if you are using Schematics, or refer to your PSpice user's guide if you are using PSpice.



## **Schematics Symbols**

For standard C parts, the effective value of the part is set directly by the VALUE attribute. For the variable capacitor, C\_VAR, the effective value is the product of the base value (VALUE) and multiplier (SET).

In general, capacitors should have positive component values (VALUE attribute). In all cases, components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming from the real to the RLC equivalent, it is possible to end up with negative component values.

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise analyses. A transient analysis may fail for a circuit with negative components. Negative capacitors may create instabilities in time that the analysis cannot handle.

| Symbol<br>Name | Model<br>Type | Attribute | Attribute Description                                              |
|----------------|---------------|-----------|--------------------------------------------------------------------|
| С              | capacitor     | VALUE     | capacitance                                                        |
|                |               | IC        | initial voltage across the capacitor during bias point calculation |
| C_VAR          |               | VALUE     | base capacitance                                                   |
|                |               | SET       | multiplier                                                         |
|                |               | SET       | multiplier                                                         |

#### **Breakout Parts**

For non-stock passive and semiconductor devices, Schematics provides a set of breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters. Another approach is to use the model editor to derive an instance model and customize this. For example, you could add device and/or lot tolerances to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix BREAK. By default, the model name is the same as the part name and references the appropriate device model with all parameters set at their default. For instance, the DBREAK part references the DBREAK model which is derived from the intrinsic PSpice A/D D model (.MODEL DBREAK D).

For breakout part CBREAK, the effective value is computed from a formula that is a function of the specified VALUE attribute.

| Part<br>Type | Symbol<br>Name | Symbol<br>Library | Attribute | Description                                                        |
|--------------|----------------|-------------------|-----------|--------------------------------------------------------------------|
| capacitor    | CBREAK         | breakout.slb      | VALUE     | capacitance                                                        |
|              |                |                   | IC        | initial voltage across the capacitor during bias point calculation |
| _            |                |                   | MODEL     | CAP model name                                                     |

## **Capacitor Model Parameters**

| Model Parameters <sup>*</sup> | Description                        | Units  | Default |
|-------------------------------|------------------------------------|--------|---------|
| С                             | capacitance multiplier             |        | 1.0     |
| TC1                           | linear temperature coefficient     | °C-1   | 0.0     |
| TC2                           | quadratic temperature coefficient  | °C-2   | 0.0     |
| T_ABS                         | absolute temperature               | °C     |         |
| T_MEASURED                    | measured temperature               | °C     |         |
| T_REL_GLOBAL                  | relative to current temperature °C |        |         |
| T_REL_LOCAL                   | relative to AKO model temperature  |        |         |
| VC1                           | linear voltage coefficient         | volt-1 | 0.0     |
| VC2                           | quadratic voltage coefficient      | volt-2 | 0.0     |

\* For information on T\_MEASURED, T\_ABS, T\_REL\_GLOBAL, and T\_REL\_LOCAL, see .MODEL (Model).

## **Capacitor Equations**

#### **Capacitor Value Formula**

If [model name] is specified, then the value is given by:

 $\langle value \rangle \cdot C \cdot (1 + VC1 \cdot V + VC2 \cdot V^2) \cdot (1 + TC1 \cdot (T - Tnom) + TC2 \cdot (T - Tnom)^2)$ 

where <value> is normally positive (though it can be negative, but not zero). Thom is the nominal temperature (set using TNOM option).

#### **Capacitor Equation for Noise**

The capacitor does not have a noise model.



## Diode

| General Form | D <name> &lt;(+) node&gt; &lt;(-) node&gt; <model name=""> [area value]</model></name> |
|--------------|----------------------------------------------------------------------------------------|
| Examples     | DCLAMP 14 O DMOD<br>D13 15 17 SWITCH 1.5                                               |
| Model Form   | .MODEL <model name=""> D [model parameters]</model>                                    |
| Description  | The diode is modeled as an ohmic resistance ( <b>RS</b> /area) in series with          |

**escription** The diode is modeled as an ohmic resistance (**RS**/area) in series with an intrinsic diode. Positive current is current flowing from the anode through the diode to the cathode.



#### **Arguments and Options**

<(+) node> The anode.

<(-) node>

The cathode.

[area value]

Scales IS, ISR, IKF, RS, CJO, and IBV, and has a default value of 1. IBV and BV are both specified as positive values.



## **Schematics Symbols**

The following table lists the set of diode breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.

| Symbol Name | Model Type | Attribute | Attribute Description |
|-------------|------------|-----------|-----------------------|
| DBREAK      | D, X       | MODEL     | D model name          |
| DBREAK3     |            |           |                       |
| DBREAKCR    |            |           |                       |
| DBREAKVV    |            |           |                       |
| DBREAKZ     |            |           |                       |

#### Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by defining one of the model parameters: T\_ABS, T\_REL\_GLOBAL, or T\_REL\_LOCAL. Additionally, model parameters can be assigned unique measurement temperatures using the T\_MEASURED model parameter. For more information, see <u>Special Considerations</u>.

## **Diode Model Parameters**

| Model Parameters <sup>*</sup> | Description                                    | Unit  | Default  |
|-------------------------------|------------------------------------------------|-------|----------|
| AF                            | flicker noise exponent                         |       | 1.0      |
| BV                            | reverse breakdown knee voltage                 | volt  | infinite |
| CJO                           | zero-bias p-n capacitance                      | farad | 0.0      |
| EG                            | bandgap voltage (barrier height)               | eV    | 1.11     |
| FC                            | forward-bias depletion capacitance coefficient |       | 0.5      |
| IBVL                          | low-level reverse breakdown knee current       | amp   | 0.0      |
| IBV                           | reverse breakdown knee current                 | amp   | 1E-10    |
| IKF                           | high-injection knee current                    | amp   | infinite |
| IS                            | saturation current                             | amp   | 1E-14    |
| ISR                           | recombination current parameter                | amp   | 0.0      |
| KF                            | flicker noise coefficient                      |       | 0.0      |
| Μ                             | p-n grading coefficient                        |       | 0.5      |
| N                             | emission coefficient                           |       | 1.0      |
| NBV                           | reverse breakdown ideality factor              |       | 1.0      |
| NBVL                          | low-level reverse breakdown ideality factor    |       | 1.0      |
| NR                            | emission coefficient for isr                   |       | 2.0      |
| RS                            | parasitic resistance                           | ohm   | 0.0      |
| TBV1                          | by temperature coefficient (linear)            | °C-1  | 0.0      |
| TBV2                          | bv temperature coefficient (quadratic)         | °C-2  | 0.0      |
| TIKF                          | ikf temperature coefficient (linear)           | °C-1  | 0.0      |
| TRS1                          | rs temperature coefficient (linear)            | °C-1  | 0.0      |
| TRS2                          | rs temperature coefficient (quadratic)         | °C-2  | 0.0      |
| π                             | transit time                                   | sec   | 0.0      |
| T_ABS                         | absolute temperature                           | °C    |          |
| T_MEASURED                    | measured temperature                           | °C    |          |
| T_REL_GLOBAL                  | relative to current temperature                | °C    |          |
| T_REL_LOCAL                   | Relative to AKO model temperature              | °C    |          |
| VJ                            | <i>p-n</i> potential                           | volt  | 1.0      |
| ХТІ                           | IS temperature exponent                        |       | 3.0      |

\* For more information on T\_MEASURED, T\_ABS, T\_REL\_GLOBAL, and T\_REL\_LOCAL, see <u>MODEL (Model)</u>.

## **Diode Equations**

The equations in this section use the following variables:

| Vd | = voltage across the intrinsic diode only |
|----|-------------------------------------------|
| Vt | $=k \cdot T/q$ (thermal voltage)          |
| k  | = Boltzmann's constant                    |
| q  | = electron charge                         |
| Т  | = analysis temperature (°K)               |
|    |                                           |

Tnom = nominal temperature (set using TNOM option)

Other variables are listed in **Diode Model Parameters**.

## **Diode Equations for DC Current**

```
Id = area \cdot (Ifwd - Irev)
```

If wd = forward current = Inrm·Kinj + Irec·Kgen

Inrm = normal current =  $IS \cdot (e^{Vd/(N \cdot Vt)} - 1)$ 

if: IKF > 0then: Kinj = high-injection factor =  $(IKF/(IKF+Inrm))^{1/2}$ else: Kinj = 1

Irec = recombination current =  $ISR \cdot (e^{Vd/(NR \cdot Vt)} - 1)$ 

Kgen = generation factor =  $((1-Vd/VJ)^2+0.005)^{M/2}$ 

 $Irev = reverse \ current = Irev_{high} + Irev_{low}$ 

 $Irev_{high} = IBV \cdot e^{-(Vd+BV)/(NBV \cdot Vt)}$ 

 $Irev_{low} = \mathbf{IBVL} \cdot e^{-(Vd+BV)/(NBVL \cdot Vt)}$ 

### **Diode Equations for Capacitance**

 $Cd = Ct + area \cdot Cj$ 

 $\begin{array}{ll} Ct = \text{transit time capacitance} = \textbf{TT} \cdot Gd \\ Gd = DC \ \text{conductance} = \text{area} \cdot \frac{d(\text{Inrm} \cdot \text{Kinj} + \text{Irec} \cdot \text{Kgen})}{dVd} \\ \text{Kinj} = \text{high-injection factor} \\ Cj = \textbf{CJO} \cdot (1 \cdot Vd/VJ)^{\cdot M} & \text{IF: } Vd \leq \textbf{FC} \cdot \textbf{VJ} \\ Cj = \textbf{CJO} \cdot (1 - \textbf{FC})^{\cdot (1 + M)} \cdot (1 - \textbf{FC} \cdot (1 + \textbf{M}) + \textbf{M} \cdot Vd/\textbf{VJ}) & \text{IF: } Vd > \text{FC} \cdot \text{VJ} \\ Cj = \text{junction capacitance} \end{array}$ 

#### **Diode Equations for Temperature Effects**

| $\mathbf{IS}(T) = \mathbf{IS} \cdot e^{(T/\text{Tnom-1}) \cdot \text{EG}/(\text{N-Vt})} \cdot (T/\text{Tnom})^{XTLN}$                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ISR(\mathrm{T}) = ISR \cdot e^{(\mathrm{T}/\mathrm{Tnom} \cdot 1) \cdot \mathrm{EG}/(\mathrm{NR} \cdot \mathrm{Vt})} \cdot (\mathrm{T}/\mathrm{Tnom})^{\mathrm{XTI/NR}}$ |
| $\mathbf{IKF}(T) = \mathbf{IKF} \cdot (1 + \mathbf{TIKF} \cdot (T-Tnom))$                                                                                                 |
| $\mathbf{BV}(T) = \mathbf{BV} \cdot (1 + \mathbf{TBV1} \cdot (T\text{-}Tnom) + \mathbf{TBV2} \cdot (T\text{-}Tnom)^2)$                                                    |
| $\mathbf{RS}(T) = \mathbf{RS} \cdot (1 + \mathbf{TRS1} \cdot (T - Tnom) + \mathbf{TRS2} \cdot (T - Tnom)^2)$                                                              |
| $VJ(T) = VJ \cdot T/Tnom - 3 \cdot Vt \cdot ln(T/Tnom) - Eg(Tnom) \cdot T/Tnom + Eg(T)$                                                                                   |
| $Eg(T) = silicon bandgap energy = 1.16000702 \cdot T^{2}/(T+1108)$                                                                                                        |
| $\textbf{CJO}(T) = \textbf{CJO} \cdot (1 + \textbf{M} \cdot (.0004 \cdot (T-Tnom) + (1-\textbf{VJ}(T)/\textbf{VJ})))$                                                     |

#### **Diode Equations for Noise**

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power densities (per unit bandwidth).

#### Parasitic Resistance Thermal Noise

In<sup>2</sup> =  $4 \cdot k \cdot T/(RS/area)$ 

#### **Intrinsic Diode Shot and Flicker Noise**

 $In^2 = 2 \cdot q \cdot Id + KF \cdot Id^{AF}/FREQUENCY$ 

## References

For a detailed description of p-n junction physics, refer to:

[1] A. S. Grove, <u>Physics and Technology of Semiconductor Devices</u>, John Wiley and Sons, Inc., 1967.

Also, for a generally detailed discussion of the U.C. Berkeley SPICE models, including the diode device, refer to:

[2] P. Antognetti and G. Massobrio, <u>Semiconductor Device Modeling with SPICE</u>, McGraw-Hill, 1988.



## **Voltage-Controlled Voltage Source**

## **Voltage-Controlled Current Source**

| General Form | E <name> &lt;(+) node&gt; &lt;(-) node&gt; &lt;(+) controlling node&gt; &lt;(-) controlling<br/>node&gt; <gain></gain></name>                                                                                                                                                                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | E <name> &lt;(+) node&gt; &lt;(-) node&gt; POLY(<value>)<br/>+ &lt; &lt;(+) controlling node&gt; &lt;(-) controlling node&gt; &gt;*<br/>+ &lt; <polynomial coefficient="" value=""> &gt;*</polynomial></value></name>                                                                                                                                                                |
|              | E <name> &lt;(+) <node> &lt;(-) node&gt; VALUE = { <expression> }</expression></node></name>                                                                                                                                                                                                                                                                                         |
|              | E <name> &lt;(+) <node> &lt;(-) node&gt; TABLE { <expression> } =<br/>+ &lt; <input value=""/>,<output value=""> &gt;*</output></expression></node></name>                                                                                                                                                                                                                           |
|              | E <name> &lt;(+) node&gt; &lt;(-) node&gt; LAPLACE { <expression> } =<br/>+ { <transform> }</transform></expression></name>                                                                                                                                                                                                                                                          |
|              | E <name> &lt;(+) node&gt; &lt;(-) node&gt; FREQ { <expression> } = [KEYWORD]<br/>+ &lt; <frequency value="">,<magnitude value="">,<phase value=""> &gt;*<br/>+ [DELAY = <delay value="">]</delay></phase></magnitude></frequency></expression></name>                                                                                                                                |
|              | E <name> &lt;(+) node&gt; &lt;(-) node&gt; CHEBYSHEV { <expression> } =<br/>+ &lt;[LP] [HP] [BP] [BR]&gt;,<cutoff frequencies="">*,<attenuation>*</attenuation></cutoff></expression></name>                                                                                                                                                                                         |
| Examples     | EBUFF 1 2 10 11 1.0<br>EAMP 13 0 POLY(1) 26 0 0 500<br>ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005<br>ESQROOT 5 0 VALUE = {5V*SQRT(V(3,2))}<br>ET2 2 0 TABLE {V(ANODE,CATHODE)} = (0,0) (30,1)<br>ERC 5 0 LAPLACE {V(10)} = {1/(1+.001*s)}<br>ELOWPASS 5 0 FREQ {V(10)}=(0,0,0)(5kHz, 0,0)(6kHz -60, 0) DELAY=3.2ms<br>ELOWPASS 5 0 CHEBYSHEV {V(10)} = LP 800 1.2K .1dB 50dB |
|              | GBUFF 1 2 10 11 1.0<br>GAMP 13 0 POLY(1) 26 0 0 500<br>GNONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005<br>GPSK 11 6 VALUE = {5MA*SIN(6.28*10kHz*TIME+V(3))}<br>GT ANODE CATHODE VALUE = {200E-6*PWR(V(1)*V(2),1.5)}<br>GLOSSY 5 0 LAPLACE {V(10)} = {exp(-sqrt(C*s*(R+L*s)))}                                                                                                     |
| Description  | The Veltere Centrelled Veltere Servers (E) and the Veltere Centrelled Correct Servers (                                                                                                                                                                                                                                                                                              |

**Description** The Voltage-Controlled Voltage Source (E) and the Voltage-Controlled Current Source (G) devices have the same syntax. For a Voltage-Controlled Current Source just substitute G for E. G generates a current, whereas E generates a voltage.





#### **Arguments and Options**

#### POLY(<value>)

Specifies the number of dimensions of the polynomial. The number of pairs of controlling nodes must be equal to the number of dimensions.

#### (+) and (-) nodes

Output nodes. Positive current flows from the (+) node through the source to the (-) node.

#### The <(+) controlling node> and <(-) controlling node>

Are in pairs and define a set of controlling voltages. A particular node can appear more than once, and the output and controlling nodes need not be different. The TABLE form has a maximum size of 2048 input/output value pairs.

#### FREQ

If a DELAY value is specified, the simulator modifies the phases in the FREQ table to incorporate the specified delay value. This is useful for cases of tables which the simulator identifies as being non-causal. When this occurs, the simulator provides a delay value necessary to make the table causal. The new syntax allows this value to be specified in subsequent simulation runs, without requiring the user to modify the table.

If a KEYWORD is specified for FREQ tables, it alters the values in the table. The KEYWORD can be one of the following:

- MAG causes magnitude of frequency response to be interpreted as a raw value instead of dB.
- DB causes magnitude to be interpreted as dB (the default).
- RAD causes phase to be interpreted in radians.
- DEG causes phase to be interpreted in degrees (the default).
- R\_I causes magnitude and phase values to be interpreted as real and imaginary magnitudes.

#### Comments

The first form and the first two examples apply to the linear case; the second form and the third example are for the nonlinear case. The last five forms and examples are analog behavioral modeling (ABM) that have expression, look up table, Laplace transform, frequency response, and filtering. Refer to your PSpice user's guide for more information on analog behavioral modeling.

Chebyshev filters have two attenuation values, given in dB, which specify the pass band ripple and the stop band attenuation. They can be given in either order, but must appear after all of the cutoff frequencies have been given. Low pass (LP) and high pass (HP) have two cutoff frequencies, specifying the pass band and stop band edges, while band pass (BP) and band reject (BR) filters have four. Again, these can be given in any order.



A listing of the filter Laplace coefficients can be obtained for each stage by turning on the LIST option in Schematics (in the Analysis Setup dialog box, click Options). The output is written to the .out file after the simulation is complete.

For the linear case, there are two controlling nodes and these are followed by the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user's guide.

Expressions **cannot** be used for linear and polynomial coefficient values in a voltage-controlled voltage source device statement.

## **Basic SPICE Polynomial Expressions (POLY)**

PSpice A/D (and SPICE) use the following syntax:

<controlled source> <connecting nodes>
+POLY(<dimension>) <controlling input> <coefficients>

where

| <controlled source=""></controlled>  | is <[E][F][G][H]device name>, meaning the device type is one of E, F, G, or H                                                                                                                                                                                                                                      |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <connecting nodes=""></connecting>   | specifies <(+node_name, -node_name)> pair between which the device is connected                                                                                                                                                                                                                                    |
| <dimension></dimension>              | is the dimension <value> of the polynomial describing the controlling function</value>                                                                                                                                                                                                                             |
| <controlling input=""></controlling> | specifies <(+node_name, -node_name)>* pairs used as input to the<br>voltage controlled source (device types E and G), or<br><v device="" name="">* for the current controlled source (device types<br/>F and H), and where the number of controlling inputs for either<br/>case equals <dimension></dimension></v> |
| <coefficients></coefficients>        | specifies the coefficient <values>* for the polynomial transfer function</values>                                                                                                                                                                                                                                  |
|                                      |                                                                                                                                                                                                                                                                                                                    |

If the source is one-dimensional (there is only one controlling source), POLY(1) is required unless the linear form is used. If the source is multidimensional (there is more than one controlling source), the dimension needs to be included in the keyword, for instance POLY(2).

Caution must be exercised with the POLY form. For instance,

EWRONG 1 0 POLY(1) (1,0) .5 1.0

tries to set node 1 to .5 volts greater than node 1. In this case, any analyses which you specify will fail to calculate a result. In particular, PSpice A/D cannot calculate the bias point for a circuit containing EWRONG. This also applies to the VALUE form of EWRONG:

 $(EWRONG 1 \ O \ VALUE = \{0.5 \ * \ V(1)\}).$ 

#### **Basic Controlled Source Attributes**

| Symbol Name                   | Attribute | Description            |
|-------------------------------|-----------|------------------------|
| Е                             | GAIN      | gain                   |
| F                             |           | gain                   |
| G                             |           | transconductance       |
| Н                             |           | transresistance        |
| EPOLY, FPOLY,<br>GPOLY, HPOLY | COEFF     | polynomial coefficient |

PSpice A/D has a built-in capability allowing controlled sources to be defined with a polynomial transfer function of any degree and any dimension. Polynomials have associated

 $Vout = P_0 + P_1 \cdot V_1 + P_2 \cdot V_2 + \cdots P_n \cdot V_n + P_{n+1} \cdot V_1 \cdot V_1 + P_{n+2} \cdot V_1 \cdot V_2 + \cdots P_{n+n} \cdot V_1 \cdot V_n + P_{2n+1} \cdot V_2 \cdot V_2 + P_{2n+2} \cdot V_2 \cdot V_3 + \cdots P_{2n+n-1} \cdot V_2 \cdot V_n + \vdots$   $P_{n!/(2(n-2)!)+2n} \cdot V_n \cdot V_n + P_{n!/(2(n-2)!)+2n+1} \cdot V_1^2 \cdot V_1 + P_{n!/(2(n-2)!)+2n+2} \cdot V_1^2 \cdot V_2 + \cdots$   $\vdots$ 

The above is written for a voltage-controlled voltage source, but the form is similar for the other sources.

The POLY part types shown in **Basic Controlled Source Attributes** are defined with a dimension of one, meaning there is only one controlling source. However, similar parts can be defined of any degree and dimension by creating part symbols with appropriate coefficient and TEMPLATE attributes, and the appropriate number of input pins.

The current-controlled parts (F, FPOLY, H, and HPOLY), contain a current-sensing voltage source. When netlisted, they generate two device declarations to the circuit file set: one for the controlled source and one for the independent current-sensing voltage source.

When defining a current-controlled source symbol of higher dimension, the TEMPLATE attribute must account for the same number of current-sensing voltage sources (equal to the dimension value). For example, a two dimensional current-controlled voltage source is described by the following polynomial equation:

Vout =  $C_0 + C_1I_1 + C_2I_2 + C_{11}I_1^2 + C_{12}I_1I_2 + C_{22}I_2^2$ 

To create the two dimensional HPOLY2 symbol, these attributes must be defined:

```
COEFF0 = 1

COEFF1 = 1

COEFF2 = 1

COEFF12 = 1

COEFF22 = 1

COEFF2 = 1

COEFF2 = 0

COEFF2 = 0

COEFF2 = 0

COEFF2 @COEFF1 @COEFF2 @COEFF11 @COEFF12 @COEFF22

TEMPLATE = H^@REFDES %5 %6 POLY(2) VH1^@REFDES VH2^@REFDES

\n+ @COEFFS \nVH1^@REFDES %1 %2 OV \nVH2^@REFDES %3 %4 OV
```

The TEMPLATE definition is actually contained on a single line. The VH1 and VH2 fragments after the  $\n$  characters represent the device declarations for the two current-sensing voltage sources required by this part. Also, the symbol graphics must have the appropriate number of pins. When placing an instance of HPOLY2 in your schematic, the COEFF*n* attributes must be appropriately set.

#### Implementation Examples

Following are some examples of traditional SPICE POLY constructs and equivalent ABM parts which could be used instead.

#### Example 1: Four-Input Voltage Adder

This is an example of a device which takes four input voltages and sums them to provide a single output voltage.

The representative polynomial expression would be as follows:

 $V_{out} = 0.0 + (1.0)V_1 + (1.0)V_2 + (1.0)V_3 + (1.0)V_4$ 

The corresponding SPICE POLY form would be as follows:

ESUM 100 101 POLY(4) (1,0) (2,0) (3,0) (4,0) 0.0 1.0 1.0 + 1.0 1.0

This could be represented with a single ABM expression device configured with the following expression attributes:

EXP1 = V(1,0) + EXP2 = V(2,0) + EXP3 = V(3,0) + EXP4 = V(4,0)

Following template substitution for the ABM device, the output becomes:

 $V(OUT) = \{ V(1,0) + V(2,0) + V(3,0) + V(4,0) \}$ 

#### Example 2: Two-Input Voltage Multiplier

This is an example of a device which takes two input voltages and multiplies them together resulting in a single output voltage.

The representative polynomial expression would be as follows:

 $V_{out} = 0.0 + (0.0)V_1 + (0.0)V_2 + (0.0)V_1^2 + (1.0)V_1V_2$ 

The corresponding SPICE POLY form would be as follows:

EMULT 100 101 POLY(2) (1,0) (2,0) 0.0 0.0 0.0 0.0 1.0

This could be represented with a single MULT device. For additional examples of a voltage multiplier device, refer to the Analog Behavioral Modeling chapter of your PSpice user's guide.

#### Example 3: Voltage Squarer

This is an example of a device that outputs the square of the input value.

For the one-dimensional polynomial, the representative polynomial expression reduces to:

Vout =  $P_0 + P_1 \cdot V + P_2 \cdot V^2 + \dots P_n \cdot V^n$ 

The corresponding SPICE POLY form would be as follows:

ESQUARE 100 101 POLY(1) (1,0) 0.0 0.0 1.0

This could be represented by a single instance of the MULT part, with both inputs from the same net. This results in the following:

 $V_{out} = (V_{in})^2$ 



# **Current-Controlled Current Source**

# **Current-Controlled Voltage Source**

| General Form | F <name> &lt;(+) node&gt; &lt;(-) node&gt;<br/>+ <controlling device="" name="" v=""> <gain></gain></controlling></name>                                                                             |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | F <name> &lt;(+) node&gt; &lt;(-) node&gt; POLY(<value>)<br/>+ <controlling device="" name="" v="">*<br/>+ &lt; <polynomial coefficient="" value=""> &gt;*</polynomial></controlling></value></name> |
| Examples     | FSENSE 1 2 VSENSE 10.0<br>FAMP 13 0 POLY(1) VIN 0 500<br>FNONLIN 100 101 POLY(2) VCNTRL1 VCINTRL2 0.0 13.6 0.2 0.005                                                                                 |

**Description** The Current-Controlled Current Source (F) and the Current-Controlled Voltage Source (H) devices have the same syntax. For a Current-Controlled Voltage Source just substitute an H for the F. The H device generates a voltage, whereas the F device generates a current.

### **Arguments and Options**

#### (+) and (-)

Output nodes. A positive current flows from the (+) node through the source to the (-) node. The current through the controlling voltage source determines the output current. The controlling source must be an independent voltage source (V device), although it need not have a zero DC value.

#### POLY(<value>)

Specifies the number of dimensions of the polynomial. The number of controlling voltage sources must be equal to the number of dimensions.

**Comments** The first General Form and the first two examples apply to the linear case. The second form and the last example are for the nonlinear case.

For the linear case, there must be one controlling voltage source and its name is followed by the gain. For all cases, including the nonlinear case (POLY), refer to your PSpice user's guide.



Expressions cannot be used for linear and polynomial coefficient values in a current-controlled current source device statement.

# **Basic SPICE Polynomial Expressions (POLY)**

For more information on the POLY form, see **<u>Basic SPICE Polynomial Expressions</u>** (POLY).



# **Independent Current Source & Stimulus**

# **Independent Voltage Source & Stimulus**

| General Form | I <name> &lt;(+) node&gt; &lt;(-) node&gt;<br/>+ [ [DC] <value> ]<br/>+ [ AC <magnitude value=""> [phase value] ]<br/>+ [STIMULUS=<stimulus name="">]<br/>+ [transient specification]</stimulus></magnitude></value></name> |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples     | IBIAS 13 0 2.3mA<br>IAC 2 3 AC .001<br>IACPHS 2 3 AC .001 90<br>IPULSE 1 0 PULSE(-1mA 1mA 2ns 2ns 2ns 50ns 100ns)<br>I3 26 77 DC .002 AC 1 SIN(.002 .002 1.5MEG)                                                            |
| Description  | This element is a current source. Positive current flows from the (+)                                                                                                                                                       |

**Description** This element is a current source. Positive current flows from the (+) node through the source to the (-) node: in the first example, IBIAS drives node 13 to have a negative voltage. The default value is zero for the DC, AC, and transient values. None, any, or all of the DC, AC, and transient values can be specified. The AC phase value is in degrees. The pulse and exponential examples are explained later in this section.





The Independent Current Source & Stimulus (I) and the Independent Voltage Source & Stimulus (V) devices have the same syntax. For an Independent Voltage Source & Stimulus just substitute a V for the I. The V device functions identically and has the same syntax as the I device, except that it generates voltage instead of current.

The variables TSTEP and TSTOP, which are used in defaulting some waveform parameters, are set by the **.TRAN (Transient Analysis)** command. TSTEP is <print step value> and TSTOP is <final time value>. The .TRAN command can be anywhere in the circuit file; it need not come after the voltage source.



### **Arguments and Options**

<stimulus name>

References a <u>.STIMULUS (Stimulus)</u> definition.

[transient specification]

| <u>Use this value</u>              | To produce this result         |
|------------------------------------|--------------------------------|
| EXP ( <parameters>)</parameters>   | an exponential waveform        |
| PULSE ( <parameters>)</parameters> | a pulse waveform               |
| PWL ( <parameters>)</parameters>   | a piecewise linear waveform    |
| SFFM ( <parameters>)</parameters>  | a frequency-modulated waveform |
| SIN ( <parameters>)</parameters>   | a sinusoidal waveform          |

# Independent Current Source & Stimulus (EXP)

**General Form** EXP (<i1> <i2> <td1> <tc1> <td2> <tc2>)

**Examples** IRAMP 10 5 EXP(1 5 1 .2 2 .5)

### Waveform Parameters

| Parameter   | Description               | Units | Default           |
|-------------|---------------------------|-------|-------------------|
| <i1></i1>   | Initial current           | amp   | none              |
| <i2></i2>   | Peak current              | amp   | none              |
| <td1></td1> | Rise (fall) delay         | sec   | 0                 |
| <tc1></tc1> | Rise (fall) time constant | sec   | TSTEP             |
| <td2></td2> | Fall (rise) delay         | sec   | <td1>+TSTEP</td1> |
| <tc2></tc2> | Fall (rise) time constant | sec   | TSTEP             |

# **Description**The EXP form causes the current to be <i1> for the first <td1> seconds. Then, the current<br/>decays exponentially from <i1> to <i2> using a time constant of <tc1>. The decay lasts<br/>td2-td1 seconds. Then, the current decays from <i2> back to <i1> using a time constant of<br/><tc2>. Independent Current Source and Stimulus Exponential Waveform Formulas<br/>describe the EXP waveform.



### Independent Current Source and Stimulus Exponential Waveform Formulas

| Time Period                | Value                                                                    |
|----------------------------|--------------------------------------------------------------------------|
| 0 to <td1></td1>           | i1                                                                       |
| <td1> to <td2></td2></td1> | $i1 + (i2-i1) \cdot (1-e^{-(TIME-td1)/tc1)}$                             |
| <td2> to TSTOP</td2>       | $i1 + (i2-i1) \cdot ((1-e^{-(TIME-td1)/tc1}) - (1-e^{-(TIME-td2)/tc2}))$ |

# Independent Current Source & Stimulus (PULSE)

General Form PULSE (<i1> <i2> <tf> <pw> <per>)

Example ISW 10 5 PULSE(1A 5A 1sec .1sec .4sec .5sec 2sec)

### Waveform Parameters

| Parameters  | Description     | Units | Default |
|-------------|-----------------|-------|---------|
| <i1></i1>   | Initial current | amp   | none    |
| <i2></i2>   | Pulsed current  | amp   | none    |
|             | Delay           | sec   | 0       |
| <tf></tf>   | Fall time       | sec   | TSTEP   |
|             | Rise time       | sec   | TSTEP   |
| <pw></pw>   | Pulse width     | sec   | TSTOP   |
| <per></per> | Period          | sec   | TSTOP   |

### Description

The PULSE form causes the current to start at  $\langle i1 \rangle$ , and stay there for  $\langle td \rangle$  seconds. Then, the current goes linearly from  $\langle i1 \rangle$  to  $\langle i2 \rangle$  during the next  $\langle tr \rangle$  seconds, and then the current stays at  $\langle i2 \rangle$  for  $\langle pw \rangle$  seconds. Then, it goes linearly from  $\langle i2 \rangle$  back to  $\langle i1 \rangle$  during the next  $\langle tf \rangle$  seconds. It stays at  $\langle i1 \rangle$  for per-(tr+pw+tf) seconds, and then the cycle is repeated except for the initial delay of  $\langle td \rangle$  seconds. Independent Current Source and Stimulus Pulse Waveform Formulas describe the PULSE waveform.



## Independent Current Source and Stimulus Pulse Waveform Formulas

| Time        | Value |          |
|-------------|-------|----------|
| 0           | i1    | <u> </u> |
| td          | i1    |          |
| td+tr       | i2    |          |
| td+tr+pw    | i2    |          |
| td+tr+pw+tf | i1    |          |
| td+per      | i1    |          |
| td+per+tr   | i2    |          |
|             |       |          |
|             |       |          |
|             |       |          |

# Independent Current Source & Stimulus (PWL)

| General Form | PWL<br>+ [TIME_SCALE_FACTOR= <value>]<br/>+ [VALUE_SCALE_FACTOR=<value>]<br/>+ (corner_points)*</value></value>                                                       |                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|              | where corner_points are:                                                                                                                                              |                                                                                                            |
|              | FILE <filename><br/>REPEAT FOR <n> (corner_points)*<br/>ENDREPEAT</n></filename>                                                                                      | to specify a point<br>to read point values from a file<br>to repeat <n> times</n>                          |
|              | REPEAT FOREVER (corner_points)*<br>ENDREPEAT                                                                                                                          | to repeat forever                                                                                          |
| Examples     | v1 1 2 PWL (0,1) (1.2,5)                                                                                                                                              | (1.4,2) (2,4) (3,1)                                                                                        |
| ·            |                                                                                                                                                                       | FOR 5 (1,0) (2,1) (3,0) ENDREPEAT<br>FOR 5 FILE DATA1.TAB                                                  |
|              | v4 78 PWL TIME_SC<br>+ REPEAT FOREVER<br>+ REPEAT                                                                                                                     | ALE_FACTOR=0.1<br>?<br>FOR 5 (1,0) (2,1) (3,0) ENDREPEAT<br>FOR 5 FILE DATA1.TAB                           |
|              | n volt square wave (where n is 1, 2, 3, 4, per cycle:                                                                                                                 | then 5); 75% duty cycle; 10 cycles; 1 microseconds                                                         |
|              | .PARAM N=1<br>.STEP PARAM N 1,5,1<br>V1 1 0 PWL<br>+ TIME_SCALE_FACTOR=1e-6 ;all<br>+ microseconds<br>+ REPEAT FOR 10<br>+ (.25, 0)(.26, {N})(.99, {N}<br>+ ENDREPEAT |                                                                                                            |
|              | 1 5 5                                                                                                                                                                 | ycles; 10 microseconds per cycle; followed by 50% 1, 2, 3, 4, then 5) lasting until the end of simulation: |
|              | .PARAM N=.2<br>.STEP PARAM N .2, 1.0, .2<br>V1 1 0 PWL                                                                                                                |                                                                                                            |
|              | + scaled to 10 us<br>+ VALUE_SCALE_FACTOR=5                                                                                                                           | -5 ; all time units are                                                                                    |
|              | + REPEAT FOR 10<br>+ (.25, 0)(.26, 1)(.99<br>+ ENDREPEAT                                                                                                              | , 1)(1, 0)                                                                                                 |
|              | + REPEAT FOREVER<br>+ (+.50, 0)<br>+ (+.01, {N}) ; itera                                                                                                              | tion time .51                                                                                              |

```
(+.01, {N}) ; iteration time .51
(+.48, {N}) ; iteration time .99
(1, 0)
ENDREPEAT
```

+ + + Assuming that a PWL specification has been given for a device to generate two triangular waveforms:

V3 1 0 PWL (1ms, 1)(2ms, 0)(3ms, 1)(4ms, 0)

Or, to replace the above with

V3 1 O PWL FILE TRIANGLE.IN

where the file triangle.in would need to contain:

(1ms, 1)(2ms, 0)(3ms, 1)(4ms, 0)

### **Waveform Parameters**

| Parameter <sup>*</sup> | Description           | Units                      | Default |
|------------------------|-----------------------|----------------------------|---------|
| <tn></tn>              | time at corner        | seconds                    | none    |
| <vn></vn>              | voltage at corner     | volts                      | none    |
| <n></n>                | number of repetitions | positive integer, 0, or -1 | none    |

\* <tn> and <n> cannot be expressions; <vn> may be an expression.

# **Description** The PWL form describes a piecewise linear waveform. Each pair of time-current values specifies a corner of the waveform. The current at times between corners is the linear interpolation of the currents at the corners.



### **Arguments and Options**

<time\_scale\_factor> and/or <value\_scale\_factor>

Can be included immediately after the PWL keyword to show that the time and/or current value pairs are to be multiplied by the appropriate scale factor. These scale factors can be expressions, in which case they are evaluated once per outer simulation loop, and thus should be composed of expressions not containing references to voltages or currents.

#### <tn> and <in>

The transient specification corner points for the PWL waveform, as shown in the first example. The  $\langle in \rangle$  can be an expression having the same restrictions as the scaling keywords, but  $\langle tn \rangle$  must be a literal.

I/V

### <file name>

The text file that supplies the time-current ( $\langle tn \rangle \langle in \rangle$ ) pairs. The contents of this file are read by the same parser that reads the circuit file, so that engineering units (e.g., 10us) are correctly interpreted. Note that the continuation + signs in the first column are unnecessary and therefore discouraged.

A typical file can be created by editing an existing PWL specification, replacing all + signs with blanks (to avoid unintentional +time). Only numbers (with units attached) can appear in the file; expressions for <tn> and <n> values are invalid. All absolute time points in <file name> are with respect to the last (<tn> <in>) entered. All relative time points are with respect to the last time point.

### REPEAT ... ENDREPEAT

These loops permit repetitions.

They can appear anywhere a (<tn> <in>) pair can appear. Absolute times within REPEAT loops are with respect to the start of the current iteration. The REPEAT ... ENDREPEAT specifications can be nested to any depth. Make sure that the current value associated with the beginning and ending time points (within the same REPEAT loop or between adjacent REPEAT loops), are the same when 0 is specified as the first point in a REPEAT loop.

#### <n>

A REPEAT FOR -1 ... ENDREPEAT is treated as if it had been REPEAT FOREVER ... ENDREPEAT. A REPEAT FOR 0 ... ENDREPEAT is ignored (other than syntax checking of the enclosed corner points).

# Independent Current Source & Stimulus (SFFM)

**General Form** SFFM (<ioff> <iampl> <fc> <mod> <fm>)

ExampleIMOD 10 5 SFFM(2 1 8Hz 4 1Hz)

### Waveform Parameters

| Parameters      | Description               | Units | Default |
|-----------------|---------------------------|-------|---------|
| <ioff></ioff>   | offset current            | amp   | none    |
| <iampl></iampl> | peak amplitude of current | amp   | none    |
| <fc></fc>       | carrier frequency         | hertz | 1/TSTOP |
| <mod></mod>     | modulation index          |       | 0       |
| <fm></fm>       | modulation frequency      | hertz | 1/TSTOP |

### Description

The SFFM (Single-Frequency FM) form causes the current, as illustrated below, to follow the formula:

ioff + iampl·sin(2p·fc·TIME + mod·sin(2p·fm·TIME) )



# Independent Current Source & Stimulus (SIN)

**General Form** SIN (<ioff> <iampl> <freq> <df> <phase>)

Examples ISIG 10 5 SIN(2 2 5Hz 1sec 1 30)

### **Waveform Parameters**

| Parameters      | Description               | Units  | Default |
|-----------------|---------------------------|--------|---------|
| <ioff></ioff>   | offset current            | amp    | none    |
| <iampl></iampl> | peak amplitude of current | amp    | none    |
| <freq></freq>   | frequency                 | hertz  | 1/TSTOP |
|                 | delay                     | sec    | 0       |
| <df></df>       | damping factor            | sec-1  | 0       |
| <phase></phase> | phase                     | degree | 0       |

### Description

The sinusoidal (SIN) waveform causes the current to start at <ioff> and stay there for seconds.

Then, the current becomes an exponentially damped sine wave. **Independent Current Source and Stimulus Sinusoidal Waveform Formulas** describe the SIN waveform.



The SIN waveform is for transient analysis only. It does not have any effect on AC analysis. To give a value to a current during AC analysis, use an AC specification, such as:

IAC 3 0 AC 1mA

where IAC has an amplitude of one milliampere during AC analysis, and can be zero during transient analysis. For transient analysis use, for example:

ITRAN 3 0 SIN(0 1mA 1kHz)

where ITRAN has an amplitude of one milliampere during transient analysis and is zero during AC analysis. Refer to your PSpice user's guide.

### Independent Current Source and Stimulus Sinusoidal Waveform Formulas

| Time period | Value                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------|
| to          | $ioff+iampl\cdot sin(2\pi \cdot phase/360^{\circ})$                                                       |
| to tstop    | $ioff+iampl \cdot sin(2\pi \cdot (freq \cdot (TIME-td)+phase/360^{\circ})) \cdot e^{-(TIME-td) \cdot df}$ |



# Inductor

| General Form | L <name> &lt;(+) node&gt; &lt;(-) node&gt; [model name] <value><br/>+ [IC=<initial value="">]</initial></value></name> |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| Examples     | LLOAD 15 0 20mH<br>L2 1 2 .2E-6<br>LCHOKE 3 42 LMOD .03<br>LSENSE 5 12 2UH IC=2mA                                      |
| Model Form   | .MODEL <model name=""> IND [model parameters]</model>                                                                  |



### **Arguments and Options**

(+) and (-) nodes

Define the polarity when the inductor has a positive voltage across it.

The first node listed (or pin one in Schematics), is defined as positive. The voltage across the component is therefore defined as the first node voltage less the second node voltage.

Positive current flows from the (+) node through the inductor to the (-) node. Current flow from the first node through the component to the second node is considered positive.

### [model name]

If [model name] is left out, then the effective value is <value>.

If [model name] is specified, then the effective value is given by the model parameters; see **Inductance Value Formula**.

If the inductor is associated with a Core model, then the effective value is the number of turns on the core. Otherwise, the effective value is the inductance. See the Model Form statement for the K device in **Inductor Coupling (and Magnetic Core)** for more information on the Core model.

<initial value>

Is the initial current through the inductor during the bias point calculation.

It can also be specified in a circuit file using a .IC statement as follows:

.IC I(L<name>) <initial value>

For details on using the .IC statement in a circuit file, see .IC (Initial Bias Point Condition) and refer to your PSpice user's guide for more information.



L

# **Schematics Symbols**

For standard L parts, the effective value of the part is set directly by the VALUE attribute.

In general, inductors should have positive component values (VALUE attribute). In all cases, components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming from the real to the RLC equivalent, it is possible to end up with negative component values.

PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise analyses. A transient analysis may fail for a circuit with negative components. Negative inductors may create instabilities in time that the analysis cannot handle.

| Symbol<br>Name | Model<br>Type | Attribute            | Attribute Description                                              |
|----------------|---------------|----------------------|--------------------------------------------------------------------|
| L              | inductor      | VALUE                | inductance                                                         |
|                |               | IC                   | initial current through the inductor during bias point calculation |
| XFRM_LINEAR    | transformer   | L1_VALUE<br>L2_VALUE | winding inductances in Henries                                     |
|                |               | COUPLING             | coefficient of mutual coupling (must be between 0 and 1)           |
| K_LINEAR       | transformer   | Ln                   | inductor reference designator                                      |

### **Breakout Parts**

For non-stock passive and semiconductor devices, Schematics provides a set of breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters. Another approach is to use the model editor to derive an instance model and customize this. For example, you could add device and/or lot tolerances to model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix BREAK. By default, the model name is the same as the part name and references the appropriate device model with all parameters set at their default. For instance, the DBREAK part references the DBREAK model which is derived from the intrinsic PSpice A/D D model (.MODEL DBREAK D).

For breakout part LBREAK, the effective value is computed from a formula that is a function of the specified VALUE attribute.

| Туре     | Name   | Library File | Attribut<br>e | Description                                                        |
|----------|--------|--------------|---------------|--------------------------------------------------------------------|
| inductor | LBREAK | breakout.slb | VALUE         | inductance                                                         |
|          |        |              | IC            | initial current through the inductor during bias point calculation |
|          |        |              | MODEL         | IND model name                                                     |

# **Inductor Model Parameters**

| Model Parameters <sup>*</sup> | Description                       | Units             | Default |
|-------------------------------|-----------------------------------|-------------------|---------|
| L                             | Inductance multiplier             |                   | 1       |
| IL1                           | Linear current coefficient        | amp <sup>-1</sup> | 0       |
| IL2                           | Quadratic current coefficient     | amp-2             | 0       |
| TC1                           | Linear temperature coefficient    | °C-1              | 0       |
| TC2                           | Quadratic temperature coefficient | °C-2              | 0       |
| T_ABS                         | Absolute temperature              | °C                |         |
| T_MEASURED                    | Measured temperature              | °C                |         |
| T_REL_GLOBAL                  | Relative to current temperature   | °C                |         |
| T_REL_LOCAL                   | Relative to AKO model temperature | °C                |         |

\* For information on T\_MEASURED, T\_ABS, T\_REL\_GLOBAL, and T\_REL\_LOCAL, see .MODEL (Model).

# **Inductor Equations**

### **Inductance Value Formula**

If [model name] is specified, then the effective value is given by:

 $\langle value \rangle \cdot L \cdot (1+IL1 \cdot I+IL2 \cdot I^2) \cdot (1+TC1 \cdot (T-Tnom)+TC2 \cdot (T-Tnom)^2)$ 

where <value> is normally positive (though it can be negative, but not zero). Thom is the nominal temperature (set using TNOM option).

### **Inductor Equation for Noise**

The inductor does not have a noise model.



# MOSFET

| General Form | <pre>M<name> <drain node=""> <gate node=""> <source node=""/> + <bulk node="" substrate=""> <model name=""> + [L=<value>] [W=<value>] + [AD=<value>] [AS=<value>] + [PD=<value>] [PS=<value>] + [NRD=<value>] [NRS=<value>] + [NRG=<value>] [NRB=<value>] + [M=<value>]</value></value></value></value></value></value></value></value></value></value></value></model></bulk></gate></drain></name></pre> |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples     | M1 14 2 13 0 PNOM L=25u W=12u<br>M13 15 3 0 0 PSTRONG<br>M16 17 3 0 0 PSTRONG M=2<br>M28 0 2 100 100 NWEAK L=33u W=12u<br>+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10                                                                                                                                                                                                                             |
| Model Form   | .MODEL <model name=""> NMOS [model parameters]<br/>.MODEL <model name=""> PMOS [model parameters]</model></model>                                                                                                                                                                                                                                                                                          |

**Description** The MOSFET is modeled as an intrinsic MOSFET using ohmic resistances in series with the drain, source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel with the drain-source channel.



### **Arguments and Options**

#### L and W

are the channel length and width, which are decreased to get the effective channel length and width. They can be specified in the device, <u>MODEL (Model)</u>, or <u>OPTIONS (Analysis Options)</u> statements. The value in the device statement supersedes the value in the model statement, which supersedes the value in the .OPTIONS statement. Defaults for L and W can be set in the .OPTIONS statement. If L or W defaults are not set, their default value is 100 u.



[L=<value>] [W=<value>] cannot be used in conjunction with Monte Carlo analysis.



### AD and AS

The drain and source diffusion areas. Defaults for AD and AS can be set in the .OPTIONS statement. If AD or AS defaults are not set, their default value is 0.

### PD and PS

The drain and source diffusion perimeters. Their default value is 0.

#### JS

Can specify the drain-bulk and source-bulk saturation currents. JS is multiplied by AD and AS.

### IS

Can also specify the drain-bulk and source-bulk saturation currents. IS is an absolute value.

### CJ

Can specify the zero-bias depletion capacitances. CJ is multiplied by AD and AS.

#### CJSW

Can also specify the zero-bias depletion capacitances. CJSW is multiplied by PD and PS.

#### CBD and CBS

Can also specify the zero-bias depletion capacitances. CBD and CBS are absolute values.

#### NRD, NRS, NRG, and NRB

Multipliers (in units of squares) that can be multiplied by RSH to yield the parasitic (ohmic) resistances of the drain (RD), source (RS), gate (RG), and substrate (RB), respectively. NRD and NRS default to 1, and NRG and NRB default to 0.

Consider a square sheet of resistive material. Analysis shows that the resistance between two parallel edges of such a sheet depends upon its composition and thickness, but is *independent* of its size as long as it is *square*. In other words, the resistance will be the same whether the square's edge is 2 mm, 2 cm, or 2 m. For this reason, the sheet resistance of such a layer, abbreviated **RSH**, has units of ohms per square.

### М

A device multiplier (default = 1), which simulates the effect of multiple devices in parallel.

The effective width, overlap and junction capacitances, and junction currents of the MOSFET are multiplied by M. The parasitic resistance values (e.g., RD and RS) are divided by M. Note the third example: it shows a device twice the size of the second example.

# **Comments** The simulator provides six MOSFET device models, which differ in the formulation of the I-V characteristic. The LEVEL parameter selects between different models as follows. For more information, see <u>References</u>.

- **LEVEL**=1 Shichman-Hodges model (see reference [1])
- **LEVEL**=2 geometry-based, analytic model (see reference [2])
- **LEVEL**=3 semi-empirical, short-channel model (see reference [2])
- **LEVEL**=4 BSIM model (see reference [3])
- **LEVEL**=5 (No longer supported.)
- **LEVEL**=6 BSIM3 model version 2.0 (see reference [7])
- **LEVEL**=7 BSIM3 model version 3.0 (see reference [8])

# **Schematics Symbols**

The following table lists the set of MOSFET breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.

| Symbol<br>Name | Model<br>Type | Attribute | Attribute Description                              |
|----------------|---------------|-----------|----------------------------------------------------|
| MBREAKN        | NMOS          | L         | channel length                                     |
| MBREAKN3       | PMOS          | W         | channel width                                      |
| MBREAKN4       |               | AD        | drain diffusion area                               |
| MBREAKP        |               | AS        | source diffusion area                              |
| MBREAKP3       |               | PD        | drain diffusion perimeter                          |
| MBREAKP4       |               | PS        | source diffusion perimeter                         |
|                |               | NRD       | relative drain resistivity (in squares)            |
|                |               | NRS       | relative source resistivity (in squares)           |
|                |               | NRG       | relative gate resistivity (in squares)             |
|                |               | NRB       | relative substrate resistivity (in squares)        |
|                |               | М         | device multiplier<br>(simulating parallel devices) |
|                |               | MODEL     | NMOS or PMOS model name                            |

### Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by defining one of the model parameters: T\_ABS, T\_REL\_GLOBAL, or T\_REL\_LOCAL. Additionally, model parameters can be assigned unique measurement temperatures using the T\_MEASURED model parameter. For more information, see <u>MOSFET Model Parameters</u>.

# **MOSFET Model Parameters**

### For All Model Levels

The parameters common to all model levels are primarily parasitic element values such as series resistance, overlap and junction capacitance, and so on.

### Model Levels 1, 2, and 3

The DC characteristics of the first three model levels are defined by the parameters VTO, KP, LAMBDA, PHI, and GAMMA. These are computed by the simulator if process parameters (e.g., TOX, and NSUB) are given, but the user-specified values always override. VTO is positive (negative) for enhancement mode and negative (positive) for depletion mode of N-channel (P-channel) devices.



The default value for **TOX** is 0.1  $\mu$  for Levels 2 and 3, but is unspecified for Level 1, which discontinues the use of process parameters.

For MOSFETs the capacitance model has been changed to conserve charge, affecting only the Level 1, 2, and 3 models.

Effective length and width for device parameters are calculated with the formula:

 $\mathbf{P}_{\mathrm{i}} = \mathbf{P}_{\mathrm{0}} + \mathbf{P}_{\mathrm{L}}/\mathbf{L}_{\mathrm{e}} + \mathbf{P}_{\mathrm{W}}/\mathbf{W}_{\mathrm{e}}$ 

where:

 $L_e = effective length = L - (LD \cdot 2)$  $W_e = effective width = W - (WD \cdot 2)$ 

See <u>MODEL (Model)</u> for more information.

### **Model Level 4**



Unlike the other models in PSpice, the BSIM model is designed for use with a process characterization system that provides all parameters. Therefore, there are no defaults specified for the parameters, and leaving one out can cause problems.

The LEVEL=4 (BSIM1) model parameters are all values obtained from process characterization, and can be generated automatically. Reference [4] of <u>References</u> describes a means of generating a process file, which must then be converted into <u>MODEL (Model)</u> statements for inclusion in the Model Library or circuit file. (The simulator does not read process files.)

The level 4 (BSIM) and level 6 (BSIM3 version 2) models have their own capacitance model, which conserves charge and remains unchanged. References [6] and [7] describe the equations for the capacitance due to channel charge.

In the following MOSFET Model Parameters list, parameters marked with a  $\zeta$  in the Default column also have corresponding parameters with a length and width dependency. For

example, VFB is a basic parameter using units of volts, and LVFB and WVFB also exist and have units of volt $\cdot\mu$ . The formula

$$\mathbf{P}_{i} = \mathbf{P}_{0} + \mathbf{P}_{L}/\mathbf{L}_{e} + \mathbf{P}_{W}/\mathbf{W}_{e}$$

is used to evaluate the parameter for the actual device, where:

 $L_e = effective \ length = L - DL$  $W_e = effective \ width = W - DW$ 

### Model Level 6 (BSIM3 version 2.0)

Ez.

The Level 6 Advanced parameters should not be changed unless the detail structure of the device is known and has specific, meaningful values.

The BSIM3 model is a physical model using extensive built-in dependencies of important dimensional and processing parameters. It includes the major effects that are important to modeling deep-submicrometer MOSFETs, such as threshold voltage reduction, nonuniform doping, mobility reduction due to the vertical field, bulk charge effect, carrier velocity saturation, drain-induced barrier lowering (DIBL), channel length modulation (CLM), hot-carrier-induced output resistance reduction, subthreshold conduction, source/drain parasitic resistance, substrate current induced body effect (SCBE), and drain voltage reduction in LDD structure. For additional, detailed model information, see **References**.

### **Additional Notes**

**Note 1** If any of the following BSIM3 version 2.0 model parameters are not explicitly specified, they are calculated using the following equations.

VTH0 = VFB + PHI +  $K\sqrt{PHI}$ 

 $K1 = GAMMA2 - 2 \cdot K2\sqrt{(PHI - VBM)}$ 

```
K2 = \frac{(GAMMA1 - GAMMA2)(\sqrt{PHI - VBX} - \sqrt{PHI})}{2\sqrt{PHI}(\sqrt{PHI - VBX} - \sqrt{PHI}) + VBM}
```

```
VBF = VTH0 - PHI - K1\sqrt{PHI}
```

$$\mathbf{PHI} = 2V_{tm} \ln \left( \frac{\mathbf{NPEAK}}{n_i} \right)$$

$$GAMMA1 = \frac{\sqrt{2q\epsilon_{si}}NPEAK}{COX}$$

$$\mathsf{GAMMA2} = \frac{\sqrt{2q}\varepsilon_{si}\mathsf{NSUB}}{\mathsf{COX}}$$

**VBX** = **PHI** - q · **NPEAK** · **XT**<sup>2</sup>/(2 $\epsilon_{si}$ )

$$LITL = \sqrt{\frac{\varepsilon_{si}TOXX_{j}}{\varepsilon_{ox}}}$$

**Note 2** Default values listed for the BSIM3 version 2.0 parameters UA, UB, UC, UA1, AB1, and UC1 are used for simplified mobility modeling.

The BSIM3 version 3 model is a deep submicron MOSFET model with the same physical basis as the BSIM3 version 2 model, but with a number of major enhancements, such as a single I-V expression to describe current and output conductance in all regions of device operation, better modeling of narrow width devices, a reformulated capacitance model to improve short and narrow geometry models, a new relaxation time model to improve transient modeling, and improved model fitting of various W/L ratios using one parameter set. BSIM3 version 3 retains the extensive built-in dependencies of dimensional and processing parameters of BSIM3 version 2. For additional, detailed model information, see Reference [8] of **References**.

### **Additional Notes**

**Note 1** If any of the following BSIM3 version 3.0 model parameters are not explicitly specified, they are calculated using the following equations:

If **VTHO** is not specified, then:

VTHO = VFB + 
$$\phi_s K1 \sqrt{\phi_s}$$

where:

**VFB**=-1.0

If **VTHO** is specified, then:

$$VFB = VTHO - \phi_s + K1 \sqrt{\phi_s}$$

$$\textbf{VBX} = \phi_s - \frac{q \cdot \textbf{NCH} \cdot XT^2}{2 \cdot \varepsilon_{si}}$$

$$\mathbf{CF} = \left(\frac{2\varepsilon_{\mathrm{ox}}}{\pi}\right) \ln\left(1 + \frac{4 \times 10^{-7}}{\mathrm{TOX}}\right)$$

where

ere  $E_g(T)$ =the energy bandgap at temperature T=  $1.16 - \frac{(7.02 \cdot 10^{-4} \cdot T^2)}{(T + 1108)}$ 

**Note 2** If **K1** AND **K2** are not specified, they are calculated using the following equations:

$$\begin{split} \textbf{K1} &= \textbf{GAMMA2} - 2\textbf{K2}\sqrt{\phi_s - \textbf{VBM}} \\ \textbf{K2} &= \frac{(\textbf{GAMMA1} - \textbf{GAMMA2})(\sqrt{\phi_s - \textbf{VBX}} - \sqrt{\phi_s})}{2\sqrt{\phi_s}(\sqrt{\phi_s - \textbf{VBM}} - \sqrt{\phi_s}) + \textbf{VBM}} \end{split}$$

where:

$$\phi_{s} = 2Vt \cdot \ln\left(\frac{\mathbf{NCH}}{n_{i}}\right)$$

$$Vt = \frac{k \cdot T}{q}$$

$$n_{i} = 1.45 \cdot 10^{10} \left(\frac{T}{300.15}\right)^{1.5} \qquad \exp\left(21.5565981 - \frac{E_{g}(T)}{2Vt}\right)$$

Note 3 If NCH is not given and GAMMA1 is given, then:

$$\mathbf{NCH} = \frac{\mathbf{GAMMA1}^2 \cdot (\mathbf{Cox})^2}{2\mathbf{q} \cdot \boldsymbol{\varepsilon}_{si}}$$

If neither GAMMA1 nor NCH is given, then NCH has a default value of  $1.7e23 \ 1/m^3$  and GAMMA1 is calculated from NCH:

$$\textbf{GAMMA1} = \frac{\sqrt{2q \cdot \boldsymbol{\epsilon}_{si} \cdot \textbf{NCH}}}{Cox}$$

If **GAMMA2** is not given, then:

$$\textbf{GAMMA2} = \frac{\sqrt{2q \cdot \boldsymbol{\epsilon}_{si} \cdot \textbf{NSUB}}}{Cox}$$

Note 3 If cgso is not given and DLC > 0, then:

 $\textbf{CGSO} = ~(\textbf{DLC} \cdot Cox) - \textbf{CGS1}$ 

If the previously calculated **CGSO**<0, then:

 $\textbf{CGSO}{=}0$ 

Else:

 $\textbf{CGSO}{=}0.6 \cdot \textbf{XJ} \cdot Cox$ 

**Note 4** If CGDO is not given and DLC>0, then:

 $\textbf{CGDO} = (\textbf{DLC} \cdot \textbf{Cox}) - \textbf{CGD1}$ 

If the previously calculated CGDO<0, then

 $\textbf{CGDO}{=}0$ 

Else:

 $\textbf{CGDO}{=}0.6 \cdot \textbf{XJ} \cdot Cox$ 

ΤТ

#### Parameter\* Description Unit Default **All Levels** AF 1 flicker noise exponent CBD 0 farad zero-bias bulk-drain *p-n* capacitance CBS farad 0 zero-bias bulk-source *p*-*n* capacitance CGBO farad/meter 0 gate-bulk overlap capacitance/channel length CGDO farad/meter 0 gate-drain overlap capacitance/channel width CGSO gate-source overlap capacitance/channel width farad/meter 0 CJ farad/meter<sup>2</sup> 0 bulk *p-n* zero-bias bottom capacitance/area CJSW farad/meter 0 bulk *p-n* zero-bias sidewall capacitance/length FC bulk *p-n* forward-bias capacitance coefficient 0.5 GDSNOI channel shot noise coefficient (use with NLEV=3) 1 IS bulk *p*-*n* saturation current 1E-14 amp JS 0 bulk *p-n* saturation current/area amp/meter<sup>2</sup> JSSW bulk *p-n* saturation sidewall current/length amp/meter 0 KF flicker noise coefficient 0 L DEFL channel length meter LEVEL model index 1 MJ 0.5 bulk *p*-*n* bottom grading coefficient MJSW bulk *p-n* sidewall grading coefficient 0.33 Ν bulk *p*-*n* emission coefficient 1 NLEV 2 noise equation selector PB bulk *p*-*n* bottom potential volt 0.8 PBSW PB volt bulk *p*-*n* sidewall potential RB bulk ohmic resistance ohm 0 RD drain ohmic resistance 0 ohm RDS drain-source shunt resistance infinite ohm RG gate ohmic resistance ohm 0 RS source ohmic resistance ohm 0 RSH drain, source diffusion sheet resistance 0 ohm/square

### **MOSFET Model Parameters**

bulk p-n transit time

0

sec

| Parameter <sup>*</sup> | Description                                                                                 | Unit                      | Default              |
|------------------------|---------------------------------------------------------------------------------------------|---------------------------|----------------------|
| T_ABS †                | absolute temperature                                                                        | °C                        |                      |
| T_MEASURED †           | measured temperature                                                                        | °C                        |                      |
| T_REL_GLOBAL †         | relative to current temperature                                                             | °C                        |                      |
| T_REL_LOCAL †          | relative to AKO model temperature                                                           | °C                        |                      |
| w                      | channel width                                                                               | meter                     | DEFW                 |
|                        | Levels 1, 2, and 3                                                                          |                           |                      |
| DELTA                  | width effect on threshold                                                                   |                           | 0                    |
| ETA                    | static feedback (Level 3)                                                                   |                           | 0                    |
| GAMMA                  | bulk threshold parameter                                                                    | volt <sup>1/2</sup>       | see page <u>2-73</u> |
| КР                     | transconductance coefficient                                                                | amp/volt <sup>2</sup>     | 2.0E-5               |
| КАРРА                  | saturation field factor (Level 3)                                                           |                           | 0.2                  |
| LAMBDA                 | channel-length modulation (Levels 1 and 2)                                                  | volt-1                    | 0.0                  |
| LD                     | lateral diffusion (length)                                                                  | meter                     | 0.0                  |
| NEFF                   | channel charge coefficient (Level 2)                                                        |                           | 1.0                  |
| NFS                    | fast surface state density                                                                  | $1/cm^2$                  | 0.0                  |
| NSS                    | surface state density                                                                       | $1/cm^2$                  | none                 |
| NSUB                   | substrate doping density                                                                    | $1/cm^3$                  | none                 |
| РНІ                    | surface potential                                                                           | volt                      | 0.6                  |
| ТНЕТА                  | mobility modulation (Level 3)                                                               | volt-1                    | 0.0                  |
| тох                    | oxide thickness                                                                             | meter                     | see page <u>2-73</u> |
| TPG                    | Gate material type:<br>+1 = opposite of substrate<br>-1 = same as substrate<br>0 = aluminum |                           | +1                   |
| UCRIT                  | mobility degradation critical field (Level 2)                                               | volt/cm                   | 1.0E4                |
| UEXP                   | mobility degradation exponent (Level 2)                                                     |                           | 0.0                  |
| UTRA                   | (not used)<br>mobility degradation transverse field coefficient                             |                           | 0.0                  |
| UO                     | surface mobility<br>(The second character is the letter O, not the<br>numeral zero.)        | cm <sup>2</sup> /volt·sec | 600                  |
| VMAX                   | maximum drift velocity                                                                      | meter/sec                 | 0                    |

| Parameter <sup>*</sup> | Description                                                             | Unit                                    | Default |
|------------------------|-------------------------------------------------------------------------|-----------------------------------------|---------|
| VTO                    | zero-bias threshold voltage                                             | volt                                    | 0       |
| WD                     | lateral diffusion (width)                                               | meter                                   | 0       |
| XJ                     | metallurgical junction depth (Levels 2 and 3)                           | meter                                   | 0       |
| XQC                    | fraction of channel charge attributed to drain                          |                                         | 1.0     |
|                        | Level 4 <sup>**</sup>                                                   |                                         |         |
| DL                     | Channel shortening                                                      | m                                       |         |
| DW                     | Channel narrowing                                                       | m                                       |         |
| ETA                    | Zero-bias drain-induced barrier lowering coefficient                    |                                         | ζ       |
| K1                     | Body effect coefficient                                                 | volt <sup>1/2</sup>                     | ζ       |
| К2                     | Drain/source depletion charge sharing coefficient                       |                                         | ζ       |
| MUS                    | Mobility at zero substrate bias and Vds=Vdd                             | cm <sup>2</sup> /volt <sup>2</sup> ·sec | ζ       |
| MUZ                    | Zero-bias mobility                                                      | cm <sup>2</sup> /volt·sec               |         |
| N0                     | Zero-bias subthreshold slope coefficient                                |                                         | ζ       |
| NB                     | Sens. of subthreshold slope to substrate bias                           |                                         | ζ       |
| ND                     | Sens. of subthreshold slope to drain bias                               |                                         | ζ       |
| PHI                    | Surface inversion potential                                             | volt                                    | ζ       |
| TEMP                   | Temperature at which parameters were measured                           | °C                                      |         |
| тох                    | Gate-oxide thickness                                                    | m                                       |         |
| U0                     | Zero-bias transverse-field mobility degradation                         | volt-1                                  | ζ       |
| U1                     | Zero-bias velocity saturation                                           | µ/volt                                  | ζ       |
| VDD                    | Measurement bias range                                                  | volts                                   |         |
| VFB                    | Flat-band voltage                                                       | volt                                    | ζ       |
| WDF                    | Drain, source junction default width                                    | meter                                   |         |
| X2E                    | Sens. of drain-induced barrier lowering effect to substrate bias        | volt <sup>-1</sup>                      | ζ       |
| X2MS                   | Sens. of mobility to substrate bias @ Vds=0                             | cm <sup>2</sup> /volt <sup>2</sup> ·sec | ζ       |
| X2MZ                   | Sens. of mobility to substrate bias @ Vds=0                             | cm <sup>2</sup> /volt <sup>2</sup> ·sec | ζ       |
| X2U0                   | Sens. of transverse-field mobility degradation effect to substrate bias | volt <sup>-2</sup>                      | ζ       |
| X2U1                   | Sens. of velocity saturation effect to substrate bias                   | $\mu$ /volt <sup>2</sup>                | ζ       |

| Parameter <sup>*</sup> | Description                                                                                                                                                                                          | Unit                                    | Default     |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|
| ХЗЕ                    | Sens. of drain-induced barrier lowering effect to drain bias @ Vds = Vdd                                                                                                                             | volt <sup>-1</sup>                      | ζ           |
| X3MS                   | Sens. of mobility to drain bias @ Vds=Vdd                                                                                                                                                            | cm <sup>2</sup> /volt <sup>2</sup> ·sec | ζ           |
| X3U1                   | Sens. of velocity saturation effect on drain                                                                                                                                                         | $\mu$ /volt <sup>2</sup>                | ζ           |
| XPART                  | Gate-oxide capacitance charge model flag.<br><b>XPART</b> =0 selects a 40/60 drain/source charge<br>partition in saturation, while <b>XPART</b> =1 selects a<br>0/100 drain/source charge partition. |                                         |             |
|                        | Level 6                                                                                                                                                                                              |                                         |             |
| A0                     | bulk charge effect coefficient NMOS<br>bulk charge effect coefficient PMOS                                                                                                                           |                                         | 1.0<br>4.4  |
| A1                     | first non-saturation coefficient NMOS first non-saturation coefficient PMOS                                                                                                                          | 1/V<br>1/V                              | 0.0<br>0.23 |
| A2                     | second non-saturation coefficient NMOS second non-saturation coefficient PMOS                                                                                                                        |                                         | 1.0<br>0.08 |
| AT                     | saturation velocity temperature coefficient                                                                                                                                                          | m/sec                                   | 3.3E4       |
| BULKMOD                | bulk charge model selector:<br>NMOS<br>PMOS                                                                                                                                                          |                                         | 1<br>2      |
| CDSC                   | drain/source and channel coupling capacitance                                                                                                                                                        | F/m <sup>2</sup>                        | 2.4E-4      |
| CDSCB                  | body bias sensitivity of CDSC                                                                                                                                                                        | F/Vm <sup>2</sup>                       | 0.0         |
| DL                     | channel length reduction on one side                                                                                                                                                                 | m                                       | 0.0         |
| DROUT                  | channel length dependent coefficient of the DIBL effect on Rout                                                                                                                                      |                                         | 0.56        |
| DSUB                   | subthreshold DIBL coefficient exponent                                                                                                                                                               |                                         | DROUT       |
| DVT0                   | first coefficient of short-channel effect on threshold voltage                                                                                                                                       |                                         | 2.2         |
| DVT1                   | second coefficient of short-channel effect on threshold voltage                                                                                                                                      |                                         | 0.53        |
|                        |                                                                                                                                                                                                      |                                         |             |

| Parameter <sup>*</sup> | Description                                                                  | Unit         | Default       |
|------------------------|------------------------------------------------------------------------------|--------------|---------------|
| DVT2                   | body bias coefficient of short-channel effect on threshold voltage           | 1/V          | -0.032        |
| DW                     | channel width reduction on one side                                          | m            | 0.0           |
| ETA0                   | DIBL coefficient in subthreshold region                                      |              | 0.08          |
| ETAB                   | body bias coefficient for the subthreshold DIBL coefficient                  | 1/V          | -0.07         |
| K1                     | first-order body effect coefficient                                          | $\sqrt{V}$   | see page 2-74 |
| K2                     | second-order body effect coefficient                                         |              | see page 2-74 |
| K3                     | narrow width effect coefficient                                              |              | 80.0          |
| КЗВ                    | body effect coefficient of K3                                                | 1/V          | 0.0           |
| KETA                   | body bias coefficient of the bulk charge effect.                             | 1/V          | -0.047        |
| KT1                    | temperature coefficient for threshold voltage                                | V            | -0.11         |
| KT1L                   | channel length sensitivity of temperature coefficient for threshold voltage. | V-m          | 0.0           |
| KT2                    | body bias coefficient of the threshold voltage temperature effect            |              | 0.022         |
| NFACTOR                | subthreshold swing coefficient                                               |              | 1.0           |
| NGATE                  | poly gate doping concentration                                               | $1/cm^3$     |               |
| NLX                    | lateral nonuniform doping coefficient                                        | m            | 1.74E-7       |
| NPEAK                  | peak doping concentration near interface                                     | $1/cm^3$     | 1.7E17        |
| NSUB                   | substrate doping concentration                                               | $1/cm^3$     | 6.0E16        |
| PCLM                   | channel length modulation coefficient                                        |              | 1.3           |
| PDIBL1                 | first output resistance DIBL effect coefficient                              |              | 0.39          |
| PDIBL2                 | second output resistance DIBL effect coefficient                             |              | 0.0086        |
| PSCBE1                 | first substrate current body effect coefficient                              | V/m          | 4.24E8        |
| PSCBE2                 | second substrate current body effect coefficient                             | m/V          | 1.0E-5        |
| PVAG                   | gate dependence of Early voltage                                             |              | 0.0           |
| RDS0                   | contact resistance                                                           | ohms         | 0.0           |
| RDSW                   | parasitic resistance per unit width                                          | ohms/ μ<br>m | 0.0           |

| Parameter <sup>*</sup> | Description                                                                                                                            | Unit               | Default       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| SATMOD                 | saturation model selector:<br>For semi-empirical output:<br>resistance model 1                                                         |                    | 2             |
|                        | For physical output:<br>resistance model 2                                                                                             |                    |               |
| SUBTHMOD               | subthreshold model selector:                                                                                                           |                    | 2             |
|                        | no subthreshold model 0<br>BSIM1 subthreshold model 1<br>BSIM3 subthreshold model 2<br>BSIM3 subthreshold model<br>using log current 3 |                    |               |
| ТNOM                   | temperature at which parameters are extracted.                                                                                         | deg. C             | 27            |
| тох                    | gate oxide thickness                                                                                                                   | m                  | 1.5E-8        |
| UA                     | first-order mobility degradation coefficient                                                                                           | m/V                | 2.25E-9       |
| UA1                    | temperature coefficient for UA                                                                                                         | m/V                | 4.31E-9       |
| UB                     | second-order mobility degradation coefficient                                                                                          | (m/V) <sup>2</sup> | 5.87E-19      |
| UB1                    | temperature coefficient for UB                                                                                                         | (m/V) <sup>2</sup> | -7.61E-18     |
| UC                     | body effect mobility degradation coefficient                                                                                           | 1/V                | 0.0465        |
| UC1                    | temperature coefficient for UC                                                                                                         | 1/V                | -0.056        |
| UTE                    | mobility temperature exponent                                                                                                          |                    | -1.5          |
| VOFF                   | offset voltage in subthreshold region                                                                                                  | V                  | -0.11         |
| VSAT                   | saturation velocity at Temp=TNOM                                                                                                       | cm/sec             | 8.0E6         |
| VTH0                   | threshold voltage at Vbs=0 for large channel length                                                                                    | V                  | see page 2-74 |
| W0                     | narrow width effect parameter                                                                                                          | m                  | 2.5E-6        |
| XJ                     | junction depth                                                                                                                         | m                  | 1.5E-7        |
| XPART                  | charge partitioning coefficient:<br>no charge model < 0.0<br>40/60 partition = 0.0<br>50/50 partition = 0.5<br>0/100 partition = 1.0   |                    | 0.0           |

| MOSFET N | lodel | Parameters | (continued) |
|----------|-------|------------|-------------|
|          |       |            |             |

| Parameter <sup>*</sup>      | Description                                                | Unit                                             | Default              |  |
|-----------------------------|------------------------------------------------------------|--------------------------------------------------|----------------------|--|
| Level 6 Advanced            |                                                            |                                                  |                      |  |
| СІТ                         | capacitance due to interface trapped charge                | F/m <sup>2</sup>                                 | 0.0                  |  |
| EM                          | critical electrical field in channel                       | V/m                                              | 4.1E7                |  |
| ETA                         | drain voltage reduction coefficient due to LDD             |                                                  | 0.3                  |  |
| GAMMA1                      | body effect coefficient near the interface                 | $\sqrt{V}$                                       | see page <u>2-74</u> |  |
| GAMMA2                      | body effect coefficient in the bulk                        | $\sqrt{V}$                                       | see page <u>2-74</u> |  |
| LDD                         | total length of the LDD region                             | m                                                | 0.0                  |  |
| LITL                        | characteristic length related to current depth             | m                                                | see page <u>2-74</u> |  |
| PHI                         | surface potential under strong inversion                   | V                                                | see page <u>2-74</u> |  |
| UO                          | mobility at Temp=TNOM:<br>NMOS<br>PMOS                     | cm <sup>2</sup> /V-sec<br>cm <sup>2</sup> /V-sec | 670.0<br>250.0       |  |
| VBM                         | maximum applied body bias                                  | V                                                | -5.0                 |  |
| VBX                         | vbs at which the depletion width equals XT                 | V                                                | see page <u>2-74</u> |  |
| VFB                         | flat-band voltage                                          | V                                                | see page <u>2-74</u> |  |
| VGHIGH                      | voltage shift of the higher bound of the transition region | V                                                | 0.12                 |  |
| VGLOW                       | voltage shift of the lower bound of the transition region  | V                                                | -0.12                |  |
| хт                          | doping depth                                               | m                                                | 1.55E-7              |  |
| Level 7: Control Parameters |                                                            |                                                  |                      |  |
| CAPMOD                      | flag for the short-channel capacitance model               | none                                             | 1                    |  |
| MOBMOD                      | mobility model selector                                    | none                                             | 1                    |  |
| NOIMOD                      | flag for noise model                                       | none                                             | 1                    |  |
| NQSMOD                      | flag for NQS model                                         | none                                             | 0                    |  |

| Parameter <sup>*</sup> | Description                                                                         | Unit             | Default              |
|------------------------|-------------------------------------------------------------------------------------|------------------|----------------------|
|                        | Level 7: AC and Capacitance Parame                                                  | eters            |                      |
| CF                     | fringing field capacitance                                                          | F/m              | see page <u>2-75</u> |
| СКАРРА                 | coefficient for lightly doped region overlap capacitance fringing field capacitance | F/m              | 0.6                  |
| CLC                    | constant term for the short-channel model                                           | m                | 1.0E-6               |
| CLE                    | exponential term for the short-channel model                                        | none             | 0.6                  |
| CGBO                   | gate bulk overlap capacitance per unit channel length                               | F/m              | 0.0                  |
| CGD1                   | light-doped drain-gate region overlap capacitance                                   | F/m              | 0.0                  |
| CGDO                   | non-LDD region drain-gate overlap capacitance per channel length                    | F/m              | see page <u>2-75</u> |
| CGS1                   | light-doped source-gate region overlap capacitance                                  | F/m              | 0.0                  |
| CGSO                   | non-LDD region source-gate overlap capacitance per channel length                   | F/m              | see page <u>2-75</u> |
| CJ                     | bottom junction per unit area                                                       | F/m <sup>2</sup> | 5.0E-4               |
| CJSW                   | source/drain side junction capacitance per unit area                                | F/m <sup>2</sup> | 5.0E-10              |
| DLC                    | length offset fitting parameter from C-V                                            | m                | LINT                 |
| DWC                    | width offset fitting parameter from C-V                                             | m                | WINT                 |
| MJ                     | bottom junction capacitance grading coefficient                                     | none             | 0.5                  |
| MJSW                   | source/drain side junction capacitance grading coefficient                          | none             | 0.33                 |
| PB                     | bottom built-in potential                                                           | V                | 1.0                  |
| PBSW                   | source/drain side junction built-in potential                                       | V                | 1.0                  |
| XPART                  | charge partitioning rate flag                                                       | none             | 0.0                  |
|                        | Level 7: Bin Description Parameter                                                  | ers              |                      |
| BINUNIT                | bin unit scale selector                                                             | none             | 1.0                  |
| LMAX                   | maximum channel length                                                              | m                | 1.0                  |
| LMIN                   | minimum channel length                                                              | m                | 0.0                  |
| WMAX                   | maximum channel width                                                               | m                | 1.0                  |
| WMIN                   | minimum channel width                                                               | m                | 0.0                  |

| Parameter <sup>*</sup> | Description                                                                             | Unit               | Default |
|------------------------|-----------------------------------------------------------------------------------------|--------------------|---------|
|                        | Level 7: DC Parameters                                                                  |                    |         |
| A0                     | bulk charge effect coefficient for channel length                                       | none               | 1.0     |
| A1                     | first non-saturation effect parameter                                                   | 1/V                | 0.0     |
| A2                     | second non-saturation factor                                                            | none               | 1.0     |
| AGS                    | gate-bias coefficient of Abulk                                                          | 1/V                | 0.0     |
| ALPHA0                 | first parameter of impact-ionization current                                            | m/V                | 0.0     |
| B0                     | bulk charge effect coefficient for channel width                                        | m                  | 0.0     |
| B1                     | bulk charge effect width offset                                                         | m                  | 0.0     |
| BETA0                  | second parameter of impact-ionization current                                           | V                  | 30.0    |
| CDSC                   | drain/source to channel coupling capacitance                                            | F/m <sup>2</sup>   | 2.4E-4  |
| CDSCB                  | body-bias sensitivity of <b>CDSC</b>                                                    | F/Vm <sup>2</sup>  | 0.0     |
| CDSCD                  | drain-bias sensitivity of <b>CDSC</b>                                                   | F/Vm <sup>2</sup>  | 0.0     |
| СІТ                    | interface trap capacitance                                                              | F/m <sup>2</sup>   | 0.0     |
| DELTA                  | effective Vds parameter                                                                 | V                  | 0.01    |
| DROUT                  | L-dependence coefficient of the DIBL correction parameter in Rout                       | none               | 0.56    |
| DSUB                   | dibl coefficient exponent in subthreshold region                                        | none               | DROUT   |
| DVT0                   | first coefficient of short-channel effect on threshold voltage                          | none               | 2.2     |
| DVT0W                  | first coefficient of narrow-width effect on threshold voltage for small-channel length  | 1/m                | 0.0     |
| DVT1                   | second coefficient of short-channel effect on threshold voltage                         | none               | 0.53    |
| DVT2                   | body-bias coefficient of short-channel effect on threshold voltage                      | 1/V                | -0.032  |
| DVTW1                  | second coefficient of narrow-width effect on threshold voltage for small channel length | 1/m                | 5.3E6   |
| DVTW2                  | body-bias coefficient of narrow-width effect for small channel length                   | 1/V                | -0.032  |
| DWB                    | coefficient of substrate body bias dependence of Weff                                   | m/V <sup>1/2</sup> | 0.0     |
| DWG                    | coefficient of gate dependence of Weff                                                  | m/V                | 0.0     |

| Parameter <sup>*</sup> | Description                                               | Unit                             | Default                     |
|------------------------|-----------------------------------------------------------|----------------------------------|-----------------------------|
| ETA0                   | DIBL coefficient in subthreshold region                   | none                             | 0.08                        |
| ЕТАВ                   | body-bias coefficient for the subthreshold DIBL effect    | 1/V                              | -0.07                       |
| JS                     | source-drain junction saturation current per unit area    | A/m <sup>2</sup>                 | 1.0E-4                      |
| <b>K</b> 1             | first-order body effect coefficient                       | V <sup>1/2</sup>                 | 0.5<br>see page <u>2-75</u> |
| K2                     | second-order body effect coefficient                      | none                             | 0.0<br>see page <u>2-75</u> |
| K3                     | narrow width coefficient                                  | none                             | 80.0                        |
| (3B                    | body effect coefficient of K3                             | 1/V                              | 0.0                         |
| <b>KETA</b>            | body-bias coefficient of bulk charge effect               | 1/V                              | -0.047                      |
| lint                   | length offset fitting parameter from I-V without bias     | m                                | 0.0                         |
| NFACTOR                | subthreshold swing factor                                 | none                             | 1.0                         |
| NGATE                  | poly gate doping concentration                            | cm <sup>-3</sup>                 | infinite                    |
| NLX                    | lateral non-uniform doping parameter                      | m                                | 1.74E-7                     |
| PCLM                   | channel length modulation parameter                       | none                             | 1.3                         |
| PDIBLC1                | first output resistance DIBL effect correction parameter  | none                             | 0.39                        |
| PDIBLC2                | second output resistance DIBL effect correction parameter | none                             | 0.0086                      |
| PDIBLCB                | body effect coefficient of DIBL correction parameter      | 1/V                              | 0.0                         |
| PRWB                   | body-effect coefficient of <b>RDSW</b>                    | $1/V^{1/2}$                      | 0.0                         |
| PRWG                   | gate bias effect coefficient of RDSW                      | 1/V                              | 0.0                         |
| PSCBE1                 | first substrate current body-effect parameter             | V/m                              | 4.24E8                      |
| PSCBE2                 | second substrate current body-effect parameter            | V/m                              | 1.0E-5                      |
| PVAG                   | gate dependence of Early voltage                          | none                             | 0.0                         |
| RDSW                   | parasitic resistance per unit width                       | $\Omega$ - $\mu m$ <sup>WR</sup> | 0.0                         |
| RSH                    | source-drain sheet resistance                             | Ω/square                         | 0.0                         |
|                        |                                                           |                                  |                             |

| Parameter <sup>*</sup> | Description                                                | Unit               | Default                                           |
|------------------------|------------------------------------------------------------|--------------------|---------------------------------------------------|
| UO                     | mobility at Temp= <b>TNOM</b><br>NMOS<br>PMOS              | 670.0<br>250.0     | cm <sup>2</sup> /(V·sec)                          |
| UA                     | first-order mobility degradation coefficient               | m/V                | 2.25E-9                                           |
| UB                     | second-order mobility degradation coefficient              | (m/V) <sup>2</sup> | 5.87E-19                                          |
| UC                     | body-effect of mobility degradation coefficient            | $m/V^2$            | -4.65E-11 when<br><b>MOBMOD</b> =1 or 2           |
|                        |                                                            | 1/V                | -0.046 when <b>MOBMOD</b> =3                      |
| /BM                    | maximum applied body bias in threshold voltage calculation | V                  | -5.0                                              |
| VOFF                   | offset voltage in the subthreshold region at large W and L | V                  | -0.08                                             |
| /SAT                   | saturation velocity at Temp= <b>TNOM</b>                   | m/sec              | 8.0E 4                                            |
| /ТНО                   | threshold voltage@Vbs=0 for large L                        | V                  | 0.7 (NMOS)<br>-0.7 (PMOS)<br>see page <u>2-75</u> |
| W0                     | narrow-width parameter                                     | m                  | 2.5E-6                                            |
| WINT                   | width-offset fitting parameter from I-V without bias       | m                  | 0.0                                               |
| WR                     | width offset from Weff for Rds calculation                 | none               | 1.0                                               |
|                        | Level 7: Flicker Noise Parameter                           | ſS                 |                                                   |
| ٩F                     | frequency exponent                                         | none               | 1.0                                               |
| F                      | flicker exponent for <b>NOIMOD</b> =2                      | none               | 1.0                                               |
| EM                     | saturation field                                           | V/m                | 4.1E7                                             |
| ٢F                     | flicker noise parameter for <b>NOIMOD</b> =1               | none               | 0.0                                               |
| AION                   | noise parameter A                                          | none               | 1.0E20 (NMOS)<br>9.9E18 (PMOS)                    |
| NOIB                   | noise parameter B                                          | none               | 5.0E4 (NMOS)<br>2.4E3 (PMOS)                      |
| NOIC                   | noise parameter C                                          | none               | -1.4E-12<br>(NMOS)<br>1.4E-12 (PMOS)              |

| Parameter <sup>*</sup>      | Description                                                                    | Unit               | Default                              |  |
|-----------------------------|--------------------------------------------------------------------------------|--------------------|--------------------------------------|--|
| Level 7: NQS Parameter      |                                                                                |                    |                                      |  |
| ELM                         | Elmore constant of the channel                                                 | none               | 5.0                                  |  |
| Level 7: Process Parameters |                                                                                |                    |                                      |  |
| GAMMA1                      | body-effect coefficient near the surface                                       | V <sup>1/2</sup>   | see page <u>2-75</u>                 |  |
| GAMMA2                      | body-effect coefficient in the bulk                                            | V <sup>1/2</sup>   | see page <u>2-75</u>                 |  |
| NCH                         | channel doping concentration                                                   | $1/cm^3$           | 1.7E17                               |  |
| NSUB                        | substrate doping concentration                                                 | $1/cm^3$           | 6.0E16                               |  |
| тох                         | gate-oxide thickness                                                           | m                  | 1.5E-8                               |  |
| VBX                         | Vbs at which the depletion region $= \mathbf{XT}$                              | V                  | see page <u>2-75</u>                 |  |
| XJ                          | junction depth                                                                 | m                  | 1.5E-7                               |  |
| хт                          | doping depth                                                                   | m                  | 1.55E-7                              |  |
|                             | Level 7: Temperature Parameter                                                 | ers                |                                      |  |
| АТ                          | temperature coefficient for saturation velocity                                | m/sec              | 3.3E4                                |  |
| KT1                         | temperature coefficient for threshold voltage                                  | V                  | -0.11                                |  |
| KT1L                        | channel length dependence of the temperature coefficient for threshold voltage | V*m                | 0.0                                  |  |
| KT2                         | body-bias coefficient of threshold voltage temperature effect                  | none               | 0.022                                |  |
| PRT                         | temperature coefficient for <b>RDSW</b>                                        | Ω-µm               | 0.0                                  |  |
| ТNOM                        | temperature at which parameters are extracted                                  | °C                 | 27.0                                 |  |
| UA1                         | temperature coefficient for UA                                                 | m/V                | 4.31E-9                              |  |
| UB1                         | temperature coefficient for UB                                                 | (m/V) <sup>2</sup> | -7.61E-18                            |  |
| UC1                         | temperature coefficient for UC                                                 | $m/V^2$            | -5.6E -11 when <b>MOBMOD</b> =1 or 2 |  |
|                             |                                                                                | 1/V                | -0.056 when <b>MOBMOD</b> =3         |  |
| UTE                         | mobility temperature exponent                                                  | none               | -1.5                                 |  |
|                             |                                                                                |                    |                                      |  |

| Parameter*                  | Description                                                  | Unit                                     | Default |  |
|-----------------------------|--------------------------------------------------------------|------------------------------------------|---------|--|
| Level 7: W and L Parameters |                                                              |                                          |         |  |
| LL                          | coefficient of length dependence for length offset           | m <sup>LLN</sup>                         | 0.0     |  |
| LLN                         | power of length dependence for length offset                 | none                                     | 1.0     |  |
| LW                          | coefficient of width dependence for length offset            | $\mathbf{m}^{LWN}$                       | 0.0     |  |
| LWL                         | coefficient of length and width cross term for length offset | $\mathrm{m}^{\mathrm{LWN+LLN}}$          | 0.0     |  |
| LWN                         | power of width dependence for length offset                  | none                                     | 1.0     |  |
| WL                          | coefficient of length dependence for width offset            | $\mathrm{m}^{\mathrm{WLN}}$              | 0.0     |  |
| WLN                         | power of length dependence of width offset                   | none                                     | 1.0     |  |
| ww                          | coefficient of width dependence for width offset             | $\mathbf{m}^{\mathbf{WWN}}$              | 0.0     |  |
| WWL                         | coefficient of length and width cross term for width offset  | $\mathbf{m}^{\mathbf{WWN}+\mathbf{WLN}}$ | 0.0     |  |
| WWN                         | power of width dependence of width offset                    | none                                     | 1.0     |  |

\* See .MODEL (Model).

\*\*A  $\zeta$  in the Default column indicates that the parameter may have corresponding parameters exhibiting length and width dependence. See **Model Level 4**.

<sup>†</sup> For information on T\_MEASURED, T\_ABS, T\_REL\_GLOBAL, and T\_REL\_LOCAL, see .MODEL (Model).

# **MOSFET Equations**

These equations describe an N-channel MOSFET. For P-channel devices, reverse the signs of all voltages and currents.

In the following equations:

| Vbs   | = intrinsic substrate-intrinsic source voltage |
|-------|------------------------------------------------|
| Vbd   | = intrinsic substrate-intrinsic drain voltage  |
| Vds   | = intrinsic drain-intrinsic source voltage     |
| Vdsat | = saturation voltage                           |
| Vgs   | = intrinsic gate-intrinsic source voltage      |
| Vgd   | = intrinsic gate-intrinsic drain voltage       |
| Vt    | $= k \cdot T/q$ (thermal voltage)              |
| Vth   | = threshold voltage                            |
| Cox   | = the gate oxide capacitance per unit area.    |
| f     | = noise frequency                              |
| k     | = Boltzmann's constant                         |
| q     | = electron charge                              |
| Leff  | = effective channel length                     |
| Weff  | = effective channel width                      |
| Т     | = analysis temperature (°K)                    |
| Tnom  | = nominal temperature (set using TNOM option)  |
|       |                                                |

Other variables are from **MOSFET Model Parameters**.



Positive current is current flowing into a terminal (for example, positive drain current flows from the drain through the channel to the source).

### **MOSFET Equations for DC Current**

```
All Levels
Ig = gate current = 0
Ib = bulk current = Ibs+Ibd
    where
    Ibs = bulk-source leakage current = Iss \cdot (e^{Vbs/(N \cdot Vt)} - 1)
    Ibd = bulk-drain leakage current = Ids \cdot (e^{Vbd/(N \cdot Vt)} - 1)
         where
         if
             JS = 0, or AS = 0, or AD = 0
         then
             Iss = IS
             Ids = IS
         else
             Iss = AS \cdot JS + PS \cdot JSSW
             Ids = AD \cdot JS + PD \cdot JSSW
Id = drain current = Idrain-Ibd
Is = source current = -Idrain-Ibs
```

Level 1: Idrain

### Normal Mode: Vds > 0

#### Case 1

for cutoff region: Vgs-V<sub>to</sub> < 0

then: Idrain = 0

#### Case 2

for linear region: Vds < Vgs-V<sub>to</sub>

then: Idrain =  $(W/L) \cdot (KP/2) \cdot (1 + LAMBDA \cdot Vds) \cdot Vds \cdot (2 \cdot (Vgs - V_{to}) - Vds)$ 

#### Case 3

for saturation region:  $0 \le Vgs-V_{to} \le Vds$ 

then: Idrain =  $(W/L) \cdot (KP/2) \cdot (1 + LAMBDA \cdot Vds) \cdot (Vgs - V_{to})^2$ 

where

 $V_{to} = \text{VTO} + \text{GAMMA} \cdot ((\text{PHI-Vbs})^{1/2} - \text{PHI}^{1/2})$ 

#### Inverted Mode: Vds < 0

Switch the source and drain in the equations above.

Levels 2 and 3: Idrain

See reference [2] of **References** for detailed information.

### **MOSFET Equations for Capacitance**

Ex.

All capacitances are between terminals of the intrinsic MOSFET, that is, to the inside of the ohmic drain and source resistances. For Levels 1, 2, and 3, the capacitance model has been changed to conserve charge.

#### Levels 1, 2, and 3

Cbs = bulk-source capacitance = area cap. + sidewall cap. + transit time cap.

Cbd = bulk-drain capacitance = area cap. + sidewall cap. + transit time cap.

```
where
    if
        CBS = 0 AND CBD = 0
     then
        Cbs = AS \cdot CJ \cdot Cbsj + PS \cdot CJSW \cdot Cbss + TT \cdot Gbs
        Cbd = AD \cdot CJ \cdot Cbdj + PD \cdot CJSW \cdot Cbds + TT \cdot Gds
     else
        Cbs = CBS \cdot Cbsj + PS \cdot CJSW \cdot Cbss + TT \cdot Gbs
        Cbd = CBD \cdot Cbdj + PD \cdot CJSW \cdot Cbds + TT \cdot Gds
            where
            Gbs = DC bulk-source conductance = dIbs/dVbs
            Gbd = DC bulk-drain conductance = dIbd/dVbd
if
     Vbs \leq FC \cdot PB
then
     Cbsj = (1-Vbs/PB)^{-MJ}
    Cbss = (1 - Vbs/PBSW)^{-MJSW}
if
     Vbs > \textbf{FC} \cdot \textbf{PB}
then
     Cbsj = (1-FC)^{-(1+MJ)} \cdot (1-FC \cdot (1+MJ) + MJ \cdot Vbs/PB)
    Cbss = (1-FC)^{(1+MJSW)} \cdot (1-FC \cdot (1+MJSW) + MJSW \cdot Vbs/PBSW)
if
     Vbd \leq \text{FC} \cdot \text{PB}
then
     Cbdj = (1-Vbd/PB)^{-MJ}
    Cbds = (1-Vbd/PBSW)^{-MJSW}
if
     Vbd > FC \cdot PB
then
     Cbdj = (1-FC) \cdot (1-FC \cdot (1+MJ) + MJ \cdot Vbd/PB)
     Cbds = (1-FC)^{-(1+MJSW)} \cdot (1-FC \cdot (1+MJSW))
```

- $Cgs = gate-source overlap capacitance = CGSO \cdot W$
- $Cgd = gate-drain overlap capacitance = CGDO \cdot W$
- $Cgb = gate-bulk overlap capacitance = CGBO \cdot L$

Levels 4 and 6

See references [6] and [7] of **References**.

### **MOSFET Equations for Temperature Effects**



The ohmic (parasitic) resistances have no temperature dependence.

#### All Levels

 $\textbf{IS}(T) = \textbf{IS} \boldsymbol{\cdot} \boldsymbol{e}^{(\text{Eg}(\text{Tnom}) \cdot T/\text{Tnom} - \text{Eg}(T))/\text{Vt}}$ 

- $\mathsf{JS}(T) = \mathsf{JS} \cdot e^{(\mathrm{Eg}(\mathrm{Tnom}) \cdot T/\mathrm{Tnom} \mathrm{Eg}(T))/\mathrm{Vt}}$
- $\textbf{JSSW}(T) = \textbf{JSSW} \cdot e^{(\text{Eg(Tnom)} \cdot T/\text{Tnom} \text{Eg(T)})/\text{Vt}}$

 $PB(T) = PB \cdot T/Tnom - 3 \cdot Vt \cdot ln(T/Tnom) - Eg(Tnom) \cdot T/Tnom + Eg(T)$ 

- $PBSW(T) = PBSW \cdot T/Tnom 3 \cdot Vt \cdot ln(T/Tnom) Eg(Tnom) \cdot T/Tnom + Eg(T)$
- $PHI(T) = PHI \cdot T/Tnom 3 \cdot Vt \cdot ln(T/Tnom) Eg(Tnom) \cdot T/Tnom + Eg(T)$
- where

 $Eg(T) = silicon bandgap energy = 1.16 - .000702 \cdot T^2/(T+1108)$ 

 $\textbf{CBD}(T) = \textbf{CBD} \cdot (1 + \textbf{MJ} \cdot (.0004 \cdot (T - Tnom) + (1 - \textbf{PB}(T)/\textbf{PB})))$ 

 $\textbf{CBS}(T) = \textbf{CBS} \cdot (1 + \textbf{MJ} \cdot (.0004 \cdot (T - Tnom) + (1 - \textbf{PB}(T) / \textbf{PB})))$ 

 $\textbf{CJ}(T) = \textbf{CJ} \cdot (1 + \textbf{MJ} \cdot (.0004 \cdot (T - Tnom) + (1 - \textbf{PB}(T)/\textbf{PB})))$ 

 $\textbf{CJSW}(T) = \textbf{CJSW} \cdot (1 + \textbf{MJSW} \cdot (.0004 \cdot (T - Tnom) + (1 - \textbf{PB}(T)/\textbf{PB})))$ 

- $\mathbf{KP}(T) = \mathbf{KP} \cdot (T/Tnom)^{-3/2}$
- $UO(T) = UO \cdot (T/Tnom)^{-3/2}$
- $\textbf{MUS}(T) = \textbf{MUS} \cdot (T/Tnom)^{\text{-}3/2}$
- $\textbf{MUZ}() = \textbf{MUZ} \cdot (T/Tnom)^{-3/2}$
- $\textbf{X3MS}(T) = \textbf{X3MS} \cdot (T/Tnom)^{\cdot_{3/2}}$

### **MOSFET Equations for Noise**

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power densities (per unit bandwidth).

The model parameter **NLEV** is used to select the form of shot and flicker noise, and **GDSNOI** is the channel shot noise coefficient model parameter. When **NLEV**<3, the original SPICE2 shot noise equation is used in both the linear and saturation regions, but the use of this equation may produce inaccurate results in the linear region. When **NLEV**=3, a different equation is used that is valid in both linear and saturation regions.

The model parameters **AF** and **KF** are used in the small-signal AC noise analysis to determine the equivalent MOSFET flicker noise.

For more information, see reference [5] of **References**.

#### **MOSFET Channel Shot and Flicker Noise**

 $Ichan^2 = Ishot^2 + Iflick^2$ 

| Intrinsic MOSFET Flicker Noise |                                                                                                                                 |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| for $NLEV = 0$                 | $Iflick^{2} = \frac{\mathbf{KF} \cdot Idrain^{\mathbf{AF}}}{COX \cdot Leff^{2} \cdot f}$                                        |  |  |  |
| for $NLEV = 1$                 | $Iflick^{2} = \frac{\mathbf{KF} \cdot Idrain^{\mathbf{AF}}}{COX \cdot Weff \cdot Leff \cdot f}$                                 |  |  |  |
| for $NLEV = 2$ , $NLEV = 3$    | $Iflick^{2} = \frac{\mathbf{KF} \cdot gm^{2}}{COX \cdot Weff \cdot Leff \cdot f^{\mathbf{AF}}}$                                 |  |  |  |
|                                | Intrinsic MOSFET Shot Noise                                                                                                     |  |  |  |
| for <b>NLEV</b> < 3            | $Ishot^2 = \frac{8 \cdot k \cdot T \cdot gm}{3}$                                                                                |  |  |  |
| for $NLEV = 3$                 | Ishot <sup>2</sup> $\equiv \frac{8 \cdot k \cdot T}{3} \times \beta \times (Vgs - Vth) \frac{1 + a + a^2}{1 + a} \times GDSNOI$ |  |  |  |
|                                | where                                                                                                                           |  |  |  |
|                                | for linear region:                                                                                                              |  |  |  |
|                                | a = 1 - (Vds/Vdsat)                                                                                                             |  |  |  |
|                                | for saturation region:<br>a = 0                                                                                                 |  |  |  |
|                                | Parasitic Resistance Thermal Noise                                                                                              |  |  |  |
| RD                             | $\mathrm{Id}^2 = 4 \cdot k \cdot \mathrm{T/RD}$                                                                                 |  |  |  |
| RG                             | $Ig^2 = 4 \cdot k \cdot T/RG$                                                                                                   |  |  |  |
| RS                             | $Is^2 = 4 \cdot k \cdot T/RS$                                                                                                   |  |  |  |
| RB                             | $Ib^2 = 4 \cdot k \cdot T/RB$                                                                                                   |  |  |  |

## References

For a more complete description of the MOSFET models, refer to:

[1] H. Shichman and D. A. Hodges, "Modeling and simulation of insulated-gate field-effect transistor switching circuits," <u>IEEE Journal of Solid-State Circuits</u>, SC-3, 285, September 1968.

[2] A. Vladimirescu, and S. Lui, "The Simulation of MOS Integrated Circuits Using SPICE2," Memorandum No. M80/7, February 1980.

[3] B. J. Sheu, D. L. Scharfetter, P.-K. Ko, and M.-C. Jeng, "BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors," <u>IEEE Journal of Solid-State Circuits</u>, SC-22, 558-566, August 1987.

[4] J. R. Pierret, "A MOS Parameter Extraction Program for the BSIM Model," Memorandum No. M84/99 and M84/100, November 1984.]

[5] P. Antognetti and G. Massobrio, <u>Semiconductor Device Modeling with SPICE</u>, McGraw-Hill, 1993.

[6] Ping Yang, Berton Epler, and Pallab K. Chatterjee, "An Investigation of the Charge Conservation Problem for MOSFET Circuit Simulation," <u>IEEE Journal of Solid-State</u> <u>Circuits</u>, Vol. SC-18, No.1, February 1983.

[7] J.H. Huang, Z.H. Liu, M.C. Jeng, K. Hui, M. Chan, P.K. KO, and C. Hu, "BSIM3 Manual," Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720.

[8] Department of Electrical Engineering and Computer Science, "BSIM3v3 Manual (Final version)," University of California, Berkeley CA 94720.

[9] J. C. Bowers, and H. A. Neinhaus, <u>SPICE2 Computer Models for HEXFETs</u>, Application Note 954A, reprinted in HEXFET Power MOSFET Databook, International Rectifier Corporation #HDB-3.

For more information on References [2] and [4], contact:

Software Distribution Office EECS/ERL Industrial Liaison Program 205 Cory Hall #1770 University of California Berkeley, CA 94720-1770 (510) 643-6687



# **Bipolar Transistor**

| General Form | <pre>Q<name> &lt; collector node&gt; <base node=""/> <emitter node=""> + [substrate node] <model name=""> [area value]</model></emitter></name></pre>                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examples     | Q1 14 2 13 PNPNOM<br>Q13 15 3 0 1 NPNSTRONG 1.5<br>Q7 VC 5 12 [SUB] LATPNP                                                                                                 |
| Model Form   | .MODEL <model name=""> NPN [model parameters]<br/>.MODEL <model name=""> PNP [model parameters]<br/>.MODEL <model name=""> LPNP [model parameters]</model></model></model> |

#### **Arguments and Options**

#### [substrate node]

is optional, and if not specified, the default is the ground.

Because the simulator allows alphanumeric names for nodes, and because there is no easy way to distinguish these from the model names, the name (not a number) used for the substrate node needs to be enclosed with square brackets []. Otherwise, nodes would be interpreted as model names. See the third example.

#### [area value]

is the relative device area and has a default value of 1.

**Description** The bipolar transistor is modeled as an intrinsic transistor using ohmic resistances in series with the collector (**RC**/area), with the base (value varies with current, see **Bipolar Transistor Equations**), and with the emitter (**RE**/area).



Positive current is current flowing into a terminal.



For model parameters with alternate names, such as **VAF** and **VA** (the alternate name is shown by using parentheses), either name can be used.

For model types NPN and PNP, the isolation junction capacitance is connected between the intrinsic-collector and substrate nodes. This is the same as in SPICE2, or SPICE3, and works well for vertical IC transistor structures. For lateral IC transistor structures there is a third model, LPNP, where the isolation junction capacitance is connected between the intrinsic-base and substrate nodes.

## **Schematics Symbols**

The following table lists the set of bipolar transistor breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.

| Symbol Name                     | Model Type | Attribute     | Attribute Description                 |
|---------------------------------|------------|---------------|---------------------------------------|
| QBREAKL                         | LPNP       | AREA<br>MODEL | area scaling factor<br>LNP model name |
| QBREAKN<br>QBREAKN3<br>QBREAKN4 | NPN        | AREA<br>MODEL | area scaling factor<br>NPN model name |
| QBREAKP<br>QBREAKP3<br>QBREAKP4 | PNP        | AREA<br>MODEL | area scaling factor<br>PNP model name |

### Setting operating temperature

Operating temperature can be set to be different from the global circuit temperature by defining one of the model parameters: T\_ABS, T\_REL\_GLOBAL, or T\_REL\_LOCAL. Additionally, model parameters can be assigned unique measurement temperatures using the T\_MEASURED model parameter. See **Bipolar Transistor Model Parameters** for more information.

# **Bipolar Transistor Model Parameters**

| Model Parameters <sup>*</sup> | Description                                   | Units   | Default  |
|-------------------------------|-----------------------------------------------|---------|----------|
| AF                            | flicker noise exponent                        |         | 1.0      |
| BF                            | ideal maximum forward beta                    |         | 100.0    |
| BR                            | ideal maximum reverse beta                    |         | 1.0      |
| CJC                           | base-collector zero-bias p-n capacitance      | farad   | 0.0      |
| CJE                           | base-emitter zero-bias p-n capacitance        | farad   | 0.0      |
| CJS (CCS)                     | substrate zero-bias p-n capacitance           | farad   | 0.0      |
| EG                            | bandgap voltage (barrier height)              | eV      | 1.11     |
| FC                            | forward-bias depletion capacitor coefficient  |         | 0.5      |
| GAMMA                         | epitaxial region doping factor                |         | 1E-11    |
| IKF (IK)                      | corner for forward-beta high-current roll-off | amp     | infinite |
| IKR                           | corner for reverse-beta high-current roll-off | amp     | infinite |
| IRB                           | current at which Rb falls halfway to          | amp     | infinite |
| IS                            | transport saturation current                  | amp     | 1E-16    |
| ISC (C4) †                    | base-collector leakage saturation current     | amp     | 0.0      |
| ISE (C2) †                    | base-emitter leakage saturation current       | amp     | 0.0      |
| ISS                           | substrate p-n saturation current              | amp     | 0.0      |
| ITF                           | transit time dependency on Ic                 | amp     | 0.0      |
| KF                            | flicker noise coefficient                     |         | 0.0      |
| MJC (MC)                      | base-collector p-n grading factor             |         | 0.33     |
| MJE (ME)                      | base-emitter p-n grading factor               |         | 0.33     |
| MJS (MS)                      | substrate p-n grading factor                  |         | 0.0      |
| NC                            | base-collector leakage emission coefficient   |         | 2.0      |
| NE                            | base-emitter leakage emission coefficient     |         | 1.5      |
| NF                            | forward current emission coefficient          |         | 1.0      |
| NK                            | high-current roll-off coefficient             |         | 0.5      |
| NR                            | reverse current emission coefficient          |         | 1.0      |
| NS                            | substrate p-n emission coefficient            |         | 1.0      |
| PTF                           | excess phase @ $1/(2\pi \cdot TF)Hz$          | degree  | 0.0      |
| QCO                           | epitaxial region charge factor                | coulomb | 0.0      |

| Model Parameters <sup>*</sup> | Description                                      | Units            | Default  |
|-------------------------------|--------------------------------------------------|------------------|----------|
| RB                            | zero-bias (maximum) base resistance              | ohm              | 0.0      |
| RBM                           | minimum base resistance                          | ohm              | RB       |
| RC                            | collector ohmic resistance                       | ohm              | 0.0      |
| RCO ‡                         | epitaxial region resistance                      | ohm              | 0.0      |
| RE                            | emitter ohmic resistance                         | ohm              | 0.0      |
| TF                            | ideal forward transit time                       | sec              | 0.0      |
| TR                            | ideal reverse transit time                       | sec              | 0.0      |
| TRB1                          | RB temperature coefficient (linear)              | $^{\circ}C^{-1}$ | 0.0      |
| TRB2                          | RB temperature coefficient (quadratic)           | °C-2             | 0.0      |
| TRC1                          | RC temperature coefficient (linear)              | $^{\circ}C^{-1}$ | 0.0      |
| TRC2                          | RC temperature coefficient (quadratic)           | °C-2             | 0.0      |
| TRE1                          | RE temperature coefficient (linear)              | $^{\circ}C^{-1}$ | 0.0      |
| TRE2                          | RE temperature coefficient (quadratic)           | °C-2             | 0.0      |
| TRM1                          | RBM temperature coefficient (linear)             | $^{\circ}C^{-1}$ | 0.0      |
| TRM2                          | RBM temperature coefficient (quadratic)          | °C-2             | 0.0      |
| T_ABS                         | absolute temperature                             | °C               |          |
| T_MEASURED                    | measured temperature                             | °C               |          |
| T_REL_GLOBAL                  | relative to current temperature                  | °C               |          |
| T_REL_LOCAL                   | relative to AKO model temperature                | °C               |          |
| VAF (VA)                      | forward Early voltage                            | volt             | infinite |
| VAR (VB)                      | reverse Early voltage                            | volt             | infinite |
| VJC (PC)                      | base-collector built-in potential                | volt             | 0.75     |
| VJE (PE)                      | base-emitter built-in potential                  | volt             | 0.75     |
| VJS (PS)                      | substrate p-n built-in potential                 | volt             | 0.75     |
| vo                            | carrier mobility knee voltage                    | volt             | 10.0     |
| VTF                           | transit time dependency on Vbc                   | volt             | infinite |
| XCJC                          | fraction of CJC connected internally to Rb       |                  | 1.0      |
| XCJC2                         | fraction of CJC connected internally to Rb       |                  | 1.0      |
| ХТВ                           | forward and reverse beta temperature coefficient |                  | 0.0      |
| XTF                           | transit time bias dependence coefficient         |                  | 0.0      |
| XTI (PT)                      | IS temperature effect exponent                   |                  | 3.0      |

\* For information on T\_MEASURED, T\_ABS, T\_REL\_GLOBAL, and T\_REL\_LOCAL, see .MODEL (Model).

 $\dagger$  The parameters **ISE** (**C2**) and **ISC** (**C4**) can be set to be greater than one. In this case, they are interpreted as multipliers of **IS** instead of absolute currents: that is, if **ISE** is greater than one, then it is replaced by **ISE-IS**. Likewise for **ISC**.

‡ If the model parameter RCO is specified, then quasi-saturation effects are included.

### **Distribution of the CJC capacitance**

The distribution of the CJC capacitance is specified by **XCJC** and **XCJC2**. The model parameter **XCJC2** is used like **XCJC**. The differences between the two parameters are as follows.

| Branch                                | XCJC             | XCJC2             |
|---------------------------------------|------------------|-------------------|
| intrinsic base to intrinsic collector | XCJC*CJC         | XCJC2*CJC         |
| extrinsic base to intrinsic collector | (1.0 – XCJC)*CJC | not applicable    |
| extrinsic base to extrinsic collector | not applicable   | (1.0 – XCJC2)*CJC |

When **XCJC2** is specified in the range 0 < XCJC2 < 1.0, **XCJC** is ignored. Also, the extrinsic base to extrinsic collector capacitance (Cbx2) and the gain-bandwidth product (Ft2) are included in the operating point information (in the output listing generated during a Bias Point Detail analysis, <u>OP (Bias Point)</u>). For backward compatibility, the parameter **XCJC** and the associated calculation of Cbx and Ft remain unchanged. Cbx and Ft appears in the output listing only when **XCJC** is specified.

The use of **XCJC2** produces more accurate results because Cbx2 (the fraction of **CJC** associated with the intrinsic collector node) now equals the ratio of the device's emitter area-to-base area. This results in a better correlation between the measured data and the gain bandwidth product (Ft2) calculated by PSpice.

Q

# **Bipolar Transistor Equations**

The equations in this section describe an NPN transistor. For the PNP and LPNP devices, reverse the signs of all voltages and currents.

The following variables are used:

- Vbe = intrinsic base-intrinsic emitter voltage
- Vbc = intrinsic base-intrinsic collector voltage
- Vbs = intrinsic base-substrate voltage
- Vbw = intrinsic base-extrinsic collector voltage (quasi-saturation only)
- Vbx = extrinsic base-intrinsic collector voltage
- Vce = intrinsic collector-intrinsic emitter voltage
- Vjs = (NPN) intrinsic collector-substrate voltage
  - = (PNP) intrinsic substrate-collector voltage
  - = (LPNP) intrinsic base-substrate voltage
- Vt =  $k \cdot T/q$  (thermal voltage)
- k =Boltzmann's constant
- q = electron charge
- T = analysis temperature ( $^{\circ}$ K)

Tnom = nominal temperature (set using the TNOM option)

Other variables are listed in **Bipolar Transistor Model Parameters**.



Positive current is current flowing into a terminal.

Q

### **Bipolar Transistor Equations for DC Current**

Ib = base current =  $area \cdot (Ibe1/BF + Ibe2 + Ibc1/BR + Ibc2)$ 

Ic = collector current =  $area \cdot (Ibe1/Kqb - Ibc1/Kqb - Ibc1/BR - Ibc2)$ 

Ibe1 = forward diffusion current =  $IS \cdot (e^{Vbe/(NF \cdot Vt)} - 1)$ 

Ibe2 = non-ideal base-emitter current =  $ISE \cdot (e^{Vbe/(NE \cdot Vt)} - 1)$ 

Ibc1 = reverse diffusion current =  $IS \cdot (e^{Vbc/(NR \cdot Vt)} - 1)$ 

Ibc2 = non-ideal base-collector current =  $ISC \cdot (e^{Vbc/(NC \cdot Vt)} - 1)$ 

Kqb = base charge factor = Kq1  $\cdot$  (1+(1+4·Kq2)<sup>NK</sup>)/2

Kq1 = 1/(1 - Vbc/VAF - Vbe/VAR)

Kq2 = Ibe1/IKF + Ibc1/IKR

Is = substrate current =  $area \cdot ISS \cdot (e^{Vjs/(NS \cdot Vt)} - 1)$ 

Rb = actual base parasitic resistance

#### Case 1

for: **IRB** = infinite (default value)

then: Rb = (RBM + (RB-RBM)/Kqb)/area

#### Case 2

For: IRB > 0

then:  $Rb = (RBM + 3 \cdot (RB-RBM) \cdot \frac{tan(x) - x}{x \cdot (tan(x))^2})/area$ 

where:  $x = \frac{(1 + (144/\pi^2) \cdot \text{Ib}/(\text{area} \cdot \text{IRB}))^{1/2} - 1}{(24/\pi^2) \cdot (\text{Ib}/(\text{area} \cdot \text{IRB}))^{1/2}}$ 

## **Bipolar Transistor Equations for Capacitance**

All capacitances, except Cbx, are between terminals of the intrinsic transistor which is inside of the collector, base, and emitter parasitic resistances. Cbx is between the intrinsic collector and the extrinsic base.

| Base-Emitter Capacitance                                                                                                                                    |                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| Cbe = base-emitter capacitance = Ctbe + <i>area</i> ·Cjbe                                                                                                   |                                |  |  |  |
| Ctbe = transit time capacitance = $tf \cdot Gbe$                                                                                                            |                                |  |  |  |
| $tf = effective TF = TF \cdot (1 + XTF \cdot (Ibe1 + area \cdot ITF))^2 \cdot e^{-2\pi i TF}$                                                               | 2Vbc/(1.44-VTF))               |  |  |  |
| Gbe = DC base-emitter conductance = $(dIbe)/(dVb)$                                                                                                          |                                |  |  |  |
| Ibe = Ibe1 + Ibe2                                                                                                                                           |                                |  |  |  |
| $Cjbe = \textbf{CJE} \cdot (1 \text{-} Vbe / \textbf{VJE})^{\text{-}\text{MJE}}$                                                                            | $IF  Vbe \leq FC \cdot VJE$    |  |  |  |
| $Cjbe = \textbf{CJE} \cdot (1 - \textbf{FC}) \cdot (1 - \textbf{FC} \cdot (1 + \textbf{MJE}) + \textbf{MJE} \cdot Vbe/\textbf{VJE}$                         | $IF  Vbe > FC \cdot VJE$       |  |  |  |
| Base-Collector C                                                                                                                                            | Capacitance                    |  |  |  |
| $Cbc = base-collector capacitance = Ctbc + area \cdot XCJC \cdot Cjbc$                                                                                      |                                |  |  |  |
| $Ctbc = transit time capacitance = TR \cdot Gbc$                                                                                                            |                                |  |  |  |
| Gbc = DC base-collector conductance = $(dIbc)/(dVbc)$                                                                                                       | )                              |  |  |  |
| $Cjbc = CJC \cdot (1-Vbc/VJC)^{-MJC}$                                                                                                                       | <i>IF</i> Vbc < <b>FC</b> ·VJC |  |  |  |
| $Cjbc = \textbf{CJC} \cdot (1 \textbf{-FC})^{\cdot (1 + \textbf{MJC})} \cdot (1 \textbf{ FC} \cdot (1 \textbf{+MJC}) \textbf{+MJC} \cdot Vbc/\textbf{VJC})$ | $IF  Vbc > FC \cdot VJC$       |  |  |  |
| Extrinsic-Base to Intrinsic-                                                                                                                                | Collector Capacitance          |  |  |  |
| Cbx = extrinsic-base to intrinsic-collector capacitance = <i>area</i>                                                                                       | u·(1- <b>XCJC</b> )·Cjbx       |  |  |  |
| $Cjbx = \textbf{CJC} \cdot (1 - Vbx/\textbf{VJC})^{\text{-MIC}}$                                                                                            | $IF  Vbx \leq FC \cdot VJC$    |  |  |  |
| $Cjbx = \textbf{CJC} \cdot (1 \textbf{-FC}) \cdot (1 \textbf{-FC} \cdot (1 \textbf{+MJC}) \textbf{+MJC} \cdot Vbx/\textbf{VJC})$                            | $IF  Vbx > FC \cdot VJC$       |  |  |  |
| Substrate Junction                                                                                                                                          | a Capacitance                  |  |  |  |
| $Cjs = substrate junction capacitance = area \cdot Cjjs$                                                                                                    |                                |  |  |  |
| $Cjjs = \textbf{CJS} \cdot (1 \text{-} Vjs/\textbf{VJS}) \text{-}\text{MIS}(assumes \ \textbf{FC} = 0)$                                                     | <i>IF</i> $Vjs \le 0$          |  |  |  |
| $Cjjs = \textbf{CJS} \cdot (1 + \textbf{MJS} \cdot Vjs / \textbf{VJS})$                                                                                     | IF  Vjs > 0                    |  |  |  |

### **Bipolar Transistor Equations for Quasi-Saturation Effect**

Quasi-saturation is an operating region where the internal base-collector metallurgical junction is forward biased, while the external base-collector terminal remains reverse biased.

This effect is modeled by extending the intrinsic Gummel-Poon model, adding a new internal node, a controlled current source, Iepi, and two controlled capacitances, represented by the charges Qo and Qw. These additions are only included if the model parameter **RCO** is specified. See reference [3] of **References** for the derivation of this extension.

 $Iepi = area \cdot (VO \cdot (Vt \cdot (K(Vbc) - K(Vbn) - ln((1 + K(Vbc))/(1 + K(Vbn)))) + Vbc - Vbn))/RCO \cdot (|Vbc - Vbn| + VO)$ 

Qo =  $area \cdot QCO \cdot (K(Vbc) - 1 - GAMMA/2)$ 

 $Qw = area \cdot QCO \cdot (K(Vbn) - 1 - GAMMA/2)$ 

where  $K(v) = (1 + GAMMA \cdot e^{(v/Vt)})^{1/2}$ 

### **Bipolar Transistor Equations for Temperature Effect**

- $IS(T) = IS \cdot e^{(T/Tnom-1) \cdot EG/(N \cdot Vt)} \cdot (T/Tnom)^{XTI/N}$ where N = 1
- $\textbf{ISE}(T) = (\textbf{ISE}/(T/Tnom)^{\text{XTB}}) \cdot e^{(T/Tnom-1) \cdot EG/(\text{NE-Vt})} \cdot (T/Tnom)^{\text{XTI/NE}}$
- $\mathsf{ISC}(T) = (\mathsf{ISC}/(T/Tnom)^{XTB}) \cdot e^{(T/Tnom-1) \cdot EG/(NC \cdot Vt)} \cdot (T/Tnom)^{XTI/NC}$
- $\textbf{ISS}(T) = (\textbf{ISS}/(T/Tnom)^{\text{XTB}}) \cdot e^{(T/Tnom-1) \cdot EG/(NS \cdot Vt)} \cdot (T/Tnom)^{\text{XTI/NS}}$
- $\mathbf{BF}(T) = \mathbf{BF} \cdot (T/Tnom)^{XTB}$
- $\textbf{BR}(T) = \textbf{BR} \cdot (T/Tnom)^{x_{TB}}$
- $\textbf{RE}(T) = \textbf{RE} \cdot (1 + \textbf{TRE1} \cdot (T Tnom) + \textbf{TRE2} \cdot (T Tnom)^2)$
- $\textbf{RB}(T) = \textbf{RB} \cdot (1 + \textbf{TRB1} \cdot (T Tnom) + \textbf{TRB2} \cdot (T Tnom)^2)$
- $RBM(T) = RBM \cdot (1 + TRM1 \cdot (T Tnom) + TRM2 \cdot (T Tnom)^2)$
- $\mathbf{RC}(T) = \mathbf{RC} \cdot (1 + \mathbf{TRC1} \cdot (T Tnom) + \mathbf{TRC2} \cdot (T Tnom)^2)$
- $VJE(T) = VJE \cdot T/Tnom 3 \cdot Vt \cdot ln(T/Tnom) Eg(Tnom) \cdot T/Tnom + Eg(T)$
- $VJC(T) = VJC \cdot T/Tnom 3 \cdot Vt \cdot ln(T/Tnom) Eg(Tnom) \cdot T/Tnom + Eg(T)$
- $VJS(T) = VJS \cdot T/Tnom 3 \cdot Vt \cdot ln(T/Tnom) Eg(Tnom) \cdot T/Tnom + Eg(T)$ where Eg(T) = silicon bandgap energy = 1.16 - .000702 \cdot T<sup>2</sup>/(T+1108)
- $\textbf{CJE}(T) = \textbf{CJE} \cdot (1 + \textbf{MJE} \cdot (.0004 \cdot (T Tnom) + (1 \textbf{VJE}(T) / \textbf{VJE})))$
- $\textbf{CJC}(T) = \textbf{CJC} \cdot (1 + \textbf{MJC} \cdot (.0004 \cdot (T Tnom) + (1 \textbf{VJC}(T) / \textbf{VJC})))$
- $\textbf{CJS}(T) = \textbf{CJS} \cdot (1 + \textbf{MJS} \cdot (.0004 \cdot (T Tnom) + (1 \textbf{VJS}(T) / \textbf{VJS})))$

2-105

### **Bipolar Transistor Equations for Noise**

Noise is calculated assuming a 1.0-hertz bandwidth, using the following spectral power densities (per unit bandwidth):

|    | Parasitic Resistances Thermal Noise                        |  |  |  |
|----|------------------------------------------------------------|--|--|--|
| RC | $Ic^2 = 4 \cdot k \cdot T/(RC/area)$                       |  |  |  |
| RB | $Ib^2 = 4 \cdot k \cdot T/RB$                              |  |  |  |
| RE | $Ie^2 = 4 \cdot k \cdot T/(RE/area)$                       |  |  |  |
|    | Base and Collector Currents Shot and Flicker Noise         |  |  |  |
| IB | $Ib^2 = 2 \cdot q \cdot Ib + KF \cdot Ib^{AF} / FREQUENCY$ |  |  |  |
| IC | $Ic^2 = 2 \cdot q \cdot Ic$                                |  |  |  |

## References

For a more information on bipolar transistor models, refer to:

[1] Ian Getreu, Modeling the Bipolar Transistor, Tektronix, Inc. part# 062-2841-00.

For a generally detailed discussion of the U.C. Berkeley SPICE models, including the bipolar transistor, refer to:

[2] P. Antognetti and G. Massobrio, <u>Semiconductor Device Modeling with SPICE</u>, McGraw-Hill, 1988.

For a description of the extension for the quasi-saturation effect, refer to:

[3] G. M. Kull, L. W. Nagel, S. W. Lee, P. Lloyd, E. J. Prendergast, and H. K. Dirks, "A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects," IEEE Transactions on Electron Devices, ED-32, 1103-1113 (1985).



# Resistor

| General Form | <pre>R<name> &lt;(+) node&gt; &lt;(-) node&gt; [model name] <value> + [TC = <tc1> [,<tc2>]]</tc2></tc1></value></name></pre> |
|--------------|------------------------------------------------------------------------------------------------------------------------------|
| Examples     | RLOAD 15 0 2K<br>R2 1 2 2.4E4 TC=.015,003<br>RFDBCK 3 33 RMOD 10K                                                            |
| Model Form   | .MODEL <model name=""> RES [model parameters]</model>                                                                        |



#### **Arguments and Options**

```
(+) and (-) nodes
```

Define the polarity when the resistor has a positive voltage across it.

[model name]

Affects the resistance value; see **Resistor Value Formulas**.

**Comments** The first node listed (or pin 1 in Schematics) is defined as positive. The voltage across the component is therefore defined as the first node voltage minus the second node voltage.

Positive current flows from the (+) node through the resistor to the (-) node. Current flow from the first node through the component to the second node is considered positive.

Temperature coefficients for the resistor can be specified in-line, as in the second example. If the resistor has a model specified, then the coefficients from the model are used for the temperature updates; otherwise, the in-line values are used. In both cases the temperature coefficients have default values of zero. Expressions cannot be used for the in-line coefficients.

# **Schematics Symbols**

For standard R parts, the effective value of the part is set directly by the VALUE attribute. For the variable resistor, R\_VAR, the effective value is the product of the base value (VALUE) and multiplier (SET).

In general, resistors should have positive component values (VALUE attribute). In all cases, components must not be given a value of zero.

However, there are cases when negative component values are desired. This occurs most often in filter designs that analyze an RLC circuit equivalent to a real circuit. When transforming from the real to the RLC equivalent, it is possible to end up with negative component values.



PSpice A/D allows negative component values for bias point, DC sweep, AC, and noise analyses. In the case of resistors, the noise contribution from negative component values come from the absolute value of the component (components are not allowed to generate negative noise). A transient analysis may fail for a circuit with negative components. Negative components may create instabilities in time that the analysis cannot handle.

| Symbol Name | Model Type        | Attribute | Attribute Description                         |
|-------------|-------------------|-----------|-----------------------------------------------|
| R           | resistor          | VALUE     | resistance                                    |
|             |                   | TC        | linear and quadratic temperature coefficients |
|             |                   | TOLERANCE | device tolerance (see page 1-24)              |
| R_VAR       | variable resistor | VALUE     | base resistance                               |
|             |                   | SET       | multiplier                                    |

The RBREAK part must be used if you want a LOT tolerance. In that case, use the Model Editor to edit the RBREAK instance.

### **Breakout Parts**

For non-stock passive and semiconductor devices, Schematics has a set of breakout parts designed for customizing model parameters for simulation. These are useful for setting up Monte Carlo and worst-case analyses with device and/or lot tolerances specified for individual model parameters.

Basic breakout part names consist of the intrinsic PSpice A/D device letter plus the suffix BREAK. By default, the model name is the same as the part name and references the appropriate device model with all parameters set at their default. For instance, the DBREAK part references the DBREAK model, which is derived from the intrinsic PSpice A/D D model (.MODEL DBREAK D). Another approach is to use the model editor to derive an instance model and customize this. For example, you could add device and/or lot tolerances to model parameters.

For breakout part RBREAK, the effective value is computed from a formula that is a function of the specified VALUE attribute.

| Part Type | Symbol<br>Name | Symbol<br>Library File | Attribute | Description    |
|-----------|----------------|------------------------|-----------|----------------|
| resistor  | RBREAK         | breakout.slb           | VALUE     | resistance     |
|           |                |                        | MODEL     | RES model name |

# **Resistor Model Parameters**

| Model Parameters* | Description                         | Units | Defaul<br>t |
|-------------------|-------------------------------------|-------|-------------|
| R                 | resistance multiplier               |       | 1.0         |
| TC1               | linear temperature coefficient      | °C-1  | 0.0         |
| TC2               | quadratic temperature coefficient   | °C-2  | 0.0         |
| TCE               | exponential temperature coefficient | %/°C  | 0.0         |
| T_ABS             | absolute temperature                | °C    |             |
| T_MEASURED        | measured temperature                | °C    |             |
| T_REL_GLOBAL      | relative to current temperature     | °C    |             |
| T_REL_LOCAL       | relative to AKO model temperature   | °C    |             |

\* For information on T\_MEASURED, T\_ABS, T\_REL\_GLOBAL, and T\_REL\_LOCAL, see .MODEL (Model).

# **Resistor Equations**

### **Resistor Value Formulas**

One If [model name] is included and **TCE** is specified, then the resistance is given by:

 $< value > R \cdot 1.01$  TCE·(T-Tnom)

where <value> is normally positive (though it can be negative, but not zero). Thom is the nominal temperature (set using TNOM option).

**Two** If [model name] is included and **TCE** is **not** specified, then the resistance is given by:  $\langle value \rangle \cdot R \cdot (1+TC1 \cdot (T-Tnom)+TC2 \cdot (T-Tnom)^2)$ 

where <value> is usually positive (though it can be negative, but not zero).

### **Resistor Equation for Noise**

Noise is calculated assuming a 1.0-hertz bandwidth. The resistor generates thermal noise using the following spectral power density (per unit bandwidth):

 $i^2 =$ 

 $4 \cdot k \cdot T/resistance$ 

